forked from biojppm/rapidyaml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
node.hpp
863 lines (710 loc) · 26.5 KB
/
node.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
#ifndef _C4_YML_NODE_HPP_
#define _C4_YML_NODE_HPP_
#include <cstddef>
#include <vector>
#include "c4/yml/tree.hpp"
#ifdef __GNUC__
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wtype-limits"
#endif
namespace c4 {
namespace yml {
template<class T> void write(NodeRef *n, T const& v);
template<class T> bool read(NodeRef const& n, T *v);
template<class K>
struct Key
{
K & k;
inline Key(K & k_) : k(k_) {}
};
template<class K>
inline Key<K> key(K & k)
{
return Key<K>{k};
}
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
//-----------------------------------------------------------------------------
class NodeRef
{
private:
Tree * m_tree;
size_t m_id;
/** This member is used to enable lazy operator[] writing. When a child
* with a key or index is not found, m_id is set to the id of the parent
* and the asked-for key or index are stored in this member until a write
* does happen. Then it is given as key or index for creating the child.
* When a key is used, the csubstr stores it (so the csubstr's string is
* non-null and the csubstr's size is different from NONE). When an index is
* used instead, the csubstr's string is set to null, and only the csubstr's
* size is set to a value different from NONE. Otherwise, when operator[]
* does find the child then this member is empty: the string is null and
* the size is NONE. */
csubstr m_seed;
public:
NodeRef() : m_tree(nullptr), m_id(NONE), m_seed() { _clear_seed(); }
NodeRef(Tree &t) : m_tree(&t), m_id(t .root_id()), m_seed() { _clear_seed(); }
NodeRef(Tree *t) : m_tree(t ), m_id(t->root_id()), m_seed() { _clear_seed(); }
NodeRef(Tree *t, size_t id) : m_tree(t), m_id(id), m_seed() { _clear_seed(); }
NodeRef(Tree *t, size_t id, size_t seed_pos) : m_tree(t), m_id(id), m_seed() { m_seed.str = nullptr; m_seed.len = seed_pos; }
NodeRef(Tree *t, size_t id, csubstr seed_key) : m_tree(t), m_id(id), m_seed(seed_key) {}
NodeRef(std::nullptr_t) : m_tree(nullptr), m_id(NONE), m_seed() {}
NodeRef(NodeRef const&) = default;
NodeRef(NodeRef &&) = default;
NodeRef& operator= (NodeRef const&) = default;
NodeRef& operator= (NodeRef &&) = default;
public:
inline Tree * tree() { return m_tree; }
inline Tree const* tree() const { return m_tree; }
inline size_t id() const { return m_id; }
inline NodeData * get() { return m_tree->get(m_id); }
inline NodeData const* get() const { return m_tree->get(m_id); }
#define _C4RV() RYML_ASSERT(valid() && !is_seed()) // save some typing (and some reading too!)
inline bool operator== (NodeRef const& that) const { _C4RV(); RYML_ASSERT(that.valid() && !that.is_seed()); RYML_ASSERT(that.m_tree == m_tree); return m_id == that.m_id; }
inline bool operator!= (NodeRef const& that) const { return ! this->operator==(that); }
inline bool operator== (std::nullptr_t) const { return m_tree == nullptr || m_id == NONE || is_seed(); }
inline bool operator!= (std::nullptr_t) const { return ! this->operator== (nullptr); }
inline bool operator== (csubstr val) const { _C4RV(); RYML_ASSERT(has_val()); return m_tree->val(m_id) == val; }
inline bool operator!= (csubstr val) const { _C4RV(); RYML_ASSERT(has_val()); return m_tree->val(m_id) != val; }
//inline operator bool () const { return m_tree == nullptr || m_id == NONE || is_seed(); }
public:
inline bool valid() const { return m_tree != nullptr && m_id != NONE; }
inline bool is_seed() const { return m_seed.str != nullptr || m_seed.len != NONE; }
inline void _clear_seed() { /*do this manually or an assert is triggered*/ m_seed.str = nullptr; m_seed.len = NONE; }
public:
inline NodeType_e type() const { _C4RV(); return m_tree->type(m_id); }
inline const char* type_str() const { _C4RV(); RYML_ASSERT(valid() && ! is_seed()); return m_tree->type_str(m_id); }
inline csubstr const& key () const { _C4RV(); return m_tree->key(m_id); }
inline csubstr const& key_tag() const { _C4RV(); return m_tree->key_tag(m_id); }
inline csubstr const& key_ref() const { _C4RV(); return m_tree->key_ref(m_id); }
inline NodeScalar const& keysc () const { _C4RV(); return m_tree->keysc(m_id); }
inline csubstr const& val () const { _C4RV(); return m_tree->val(m_id); }
inline csubstr const& val_tag() const { _C4RV(); return m_tree->val_tag(m_id); }
inline csubstr const& val_ref() const { _C4RV(); return m_tree->val_ref(m_id); }
inline NodeScalar const& valsc () const { _C4RV(); return m_tree->valsc(m_id); }
inline csubstr const& key_anchor() const { _C4RV(); return m_tree->key_anchor(m_id); }
inline csubstr const& val_anchor() const { _C4RV(); return m_tree->val_anchor(m_id); }
public:
// node predicates
inline bool is_root() const { _C4RV(); return m_tree->is_root(m_id); }
inline bool is_stream() const { _C4RV(); return m_tree->is_stream(m_id); }
inline bool is_doc() const { _C4RV(); return m_tree->is_doc(m_id); }
inline bool is_container() const { _C4RV(); return m_tree->is_container(m_id); }
inline bool is_map() const { _C4RV(); return m_tree->is_map(m_id); }
inline bool is_seq() const { _C4RV(); return m_tree->is_seq(m_id); }
inline bool has_val() const { _C4RV(); return m_tree->has_val(m_id); }
inline bool has_key() const { _C4RV(); return m_tree->has_key(m_id); }
inline bool is_val() const { _C4RV(); return m_tree->is_val(m_id); }
inline bool is_keyval() const { _C4RV(); return m_tree->is_keyval(m_id); }
inline bool has_key_tag() const { _C4RV(); return m_tree->has_key_tag(m_id); }
inline bool has_val_tag() const { _C4RV(); return m_tree->has_val_tag(m_id); }
inline bool is_key_ref() const { _C4RV(); return m_tree->is_key_ref(m_id); }
inline bool is_val_ref() const { _C4RV(); return m_tree->is_val_ref(m_id); }
inline bool is_ref() const { _C4RV(); return m_tree->is_ref(m_id); }
inline bool is_anchor() const { _C4RV(); return m_tree->is_anchor(m_id); }
inline bool has_key_anchor() const { _C4RV(); return m_tree->has_key_anchor(m_id); }
inline bool has_val_anchor() const { _C4RV(); return m_tree->has_val_anchor(m_id); }
inline bool parent_is_seq() const { _C4RV(); return m_tree->parent_is_seq(m_id); }
inline bool parent_is_map() const { _C4RV(); return m_tree->parent_is_map(m_id); }
/** true when name and value are empty, and has no children */
inline bool empty() const { _C4RV(); return m_tree->empty(m_id); }
public:
// hierarchy predicates
inline bool has_parent() const { _C4RV(); return m_tree->has_parent(m_id); }
inline bool has_child(NodeRef const& ch) const { _C4RV(); return m_tree->has_child(m_id, ch.m_id); }
inline bool has_child(csubstr name) const { _C4RV(); return m_tree->has_child(m_id, name); }
inline bool has_children() const { _C4RV(); return m_tree->has_children(m_id); }
inline bool has_sibling(NodeRef const& n) const { _C4RV(); return m_tree->has_sibling(m_id, n.m_id); }
inline bool has_sibling(csubstr name) const { _C4RV(); return m_tree->has_sibling(m_id, name); }
/** counts with this */
inline bool has_siblings() const { _C4RV(); return m_tree->has_siblings(m_id); }
/** does not count with this */
inline bool has_other_siblings() const { _C4RV(); return m_tree->has_other_siblings(m_id); }
public:
// hierarchy getters
NodeRef parent() { _C4RV(); return {m_tree, m_tree->parent(m_id)}; }
NodeRef const parent() const { _C4RV(); return {m_tree, m_tree->parent(m_id)}; }
NodeRef prev_sibling() { _C4RV(); return {m_tree, m_tree->prev_sibling(m_id)}; }
NodeRef const prev_sibling() const { _C4RV(); return {m_tree, m_tree->prev_sibling(m_id)}; }
NodeRef next_sibling() { _C4RV(); return {m_tree, m_tree->next_sibling(m_id)}; }
NodeRef const next_sibling() const { _C4RV(); return {m_tree, m_tree->next_sibling(m_id)}; }
/** O(#num_children) */
size_t num_children() const { _C4RV(); return m_tree->num_children(m_id); }
size_t child_pos(NodeRef const& n) const { _C4RV(); return m_tree->child_pos(m_id, n.m_id); }
NodeRef first_child() { _C4RV(); return {m_tree, m_tree->first_child(m_id)}; }
NodeRef const first_child() const { _C4RV(); return {m_tree, m_tree->first_child(m_id)}; }
NodeRef last_child () { _C4RV(); return {m_tree, m_tree->last_child (m_id)}; }
NodeRef const last_child () const { _C4RV(); return {m_tree, m_tree->last_child (m_id)}; }
NodeRef child(size_t pos) { _C4RV(); return {m_tree, m_tree->child(m_id, pos)}; }
NodeRef const child(size_t pos) const { _C4RV(); return {m_tree, m_tree->child(m_id, pos)}; }
NodeRef find_child(csubstr name) { _C4RV(); return {m_tree, m_tree->find_child(m_id, name)}; }
NodeRef const find_child(csubstr name) const { _C4RV(); return {m_tree, m_tree->find_child(m_id, name)}; }
/** O(#num_siblings) */
size_t num_siblings() const { _C4RV(); return m_tree->num_siblings(m_id); }
size_t num_other_siblings() const { _C4RV(); return m_tree->num_other_siblings(m_id); }
size_t sibling_pos(NodeRef const& n) const { _C4RV(); return m_tree->child_pos(m_tree->parent(m_id), n.m_id); }
NodeRef first_sibling() { _C4RV(); return {m_tree, m_tree->first_sibling(m_id)}; }
NodeRef const first_sibling() const { _C4RV(); return {m_tree, m_tree->first_sibling(m_id)}; }
NodeRef last_sibling () { _C4RV(); return {m_tree, m_tree->last_sibling(m_id)}; }
NodeRef const last_sibling () const { _C4RV(); return {m_tree, m_tree->last_sibling(m_id)}; }
NodeRef sibling(size_t pos) { _C4RV(); return {m_tree, m_tree->sibling(m_id, pos)}; }
NodeRef const sibling(size_t pos) const { _C4RV(); return {m_tree, m_tree->sibling(m_id, pos)}; }
NodeRef find_sibling(csubstr name) { _C4RV(); return {m_tree, m_tree->find_sibling(m_id, name)}; }
NodeRef const find_sibling(csubstr name) const { _C4RV(); return {m_tree, m_tree->find_sibling(m_id, name)}; }
public:
inline void set_type(NodeType t)
{
_C4RV();
m_tree->_set_flags(m_id, t);
}
inline void set_key(csubstr const& key)
{
_C4RV();
m_tree->_set_key(m_id, key);
}
template<class T>
inline void set_key_serialized(T const& k)
{
_C4RV();
csubstr s = m_tree->to_arena(k);
m_tree->_set_key(m_id, s);
}
inline void set_key_tag(csubstr const& key_tag)
{
_C4RV();
m_tree->set_key_tag(m_id, key_tag);
}
inline void set_val(csubstr const& val)
{
_C4RV();
m_tree->_set_val(m_id, val);
}
template<class T>
inline void set_val_serialized(T const& v)
{
_C4RV();
auto sp = m_tree->to_arena(v);
m_tree->_set_val(m_id, sp);
}
inline void set_val_tag(csubstr const& val_tag) const
{
_C4RV();
m_tree->set_val_tag(m_id, val_tag);
}
template<class T>
inline csubstr to_arena(T const& s) const
{
_C4RV();
return m_tree->to_arena(s);
}
public:
/** O(num_children) */
NodeRef operator[] (csubstr const& k)
{
RYML_ASSERT( ! is_seed());
RYML_ASSERT(valid());
size_t ch = m_tree->find_child(m_id, k);
NodeRef r = ch != NONE ? NodeRef(m_tree, ch) : NodeRef(m_tree, m_id, k);
return r;
}
/** O(num_children) */
NodeRef operator[] (size_t pos)
{
RYML_ASSERT( ! is_seed());
RYML_ASSERT(valid());
size_t ch = m_tree->child(m_id, pos);
NodeRef r = ch != NONE ? NodeRef(m_tree, ch) : NodeRef(m_tree, m_id, pos);
return r;
}
public:
/** O(num_children) */
NodeRef const operator[] (csubstr const& k) const
{
RYML_ASSERT( ! is_seed());
RYML_ASSERT(valid());
size_t ch = m_tree->find_child(m_id, k);
RYML_ASSERT(ch != NONE);
NodeRef const r(m_tree, ch);
return r;
}
/** O(num_children) */
NodeRef const operator[] (size_t pos) const
{
RYML_ASSERT( ! is_seed());
RYML_ASSERT(valid());
size_t ch = m_tree->child(m_id, pos);
RYML_ASSERT(ch != NONE);
NodeRef const r(m_tree, ch);
return r;
}
public:
inline void clear()
{
if(is_seed()) return;
m_tree->remove_children(m_id);
m_tree->_clear(m_id);
}
inline void clear_key()
{
if(is_seed()) return;
m_tree->_clear_key(m_id);
}
inline void clear_val()
{
if(is_seed()) return;
m_tree->_clear_val(m_id);
}
inline void clear_children()
{
if(is_seed()) return;
m_tree->remove_children(m_id);
}
public:
inline void operator= (NodeType_e t)
{
_apply_seed();
m_tree->_set_flags(m_id, t);
}
inline void operator|= (NodeType_e t)
{
_apply_seed();
m_tree->_add_flags(m_id, t);
}
inline void operator= (NodeInit const& v)
{
_apply_seed();
_apply(v);
}
inline void operator= (NodeScalar const& v)
{
_apply_seed();
_apply(v);
}
inline void operator= (csubstr const& v)
{
_apply_seed();
_apply(v);
}
template<size_t N>
inline void operator= (const char (&v)[N])
{
_apply_seed();
csubstr sv;
sv.assign<N>(v);
_apply(sv);
}
public:
inline NodeRef& operator<< (csubstr const& s) // this overload is needed to prevent ambiguity (there's also << for writing a span to a stream)
{
_apply_seed();
write(this, s);
RYML_ASSERT(get()->val() == s);
return *this;
}
template<class T>
inline NodeRef& operator<< (T const& v)
{
_apply_seed();
write(this, v);
return *this;
}
template<class T>
inline NodeRef& operator<< (Key<const T> const& v)
{
_apply_seed();
set_key_serialized(v.k);
return *this;
}
template<class T>
inline NodeRef& operator<< (Key<T> const& v)
{
_apply_seed();
set_key_serialized(v.k);
return *this;
}
template<class T>
inline NodeRef const& operator>> (T &v) const
{
RYML_ASSERT( ! is_seed());
RYML_ASSERT(valid());
RYML_ASSERT(get() != nullptr);
if( ! read(*this, &v))
{
c4::yml::error("could not parse value");
}
return *this;
}
template<class T>
inline NodeRef const& operator>> (Key<T> v) const
{
RYML_ASSERT( ! is_seed());
RYML_ASSERT(valid());
RYML_ASSERT(get() != nullptr);
from_chars(key(), &v.k);
return *this;
}
public:
template<class T>
void get_if(csubstr const& name, T *var) const
{
auto ch = find_child(name);
if(ch.valid())
{
ch >> *var;
}
}
template<class T>
void get_if(csubstr const& name, T *var, T const& fallback) const
{
auto ch = find_child(name);
if(ch.valid())
{
ch >> *var;
}
else
{
*var = fallback;
}
}
private:
void _apply_seed()
{
if(m_seed.str) // we have a seed key: use it to create the new child
{
//RYML_ASSERT(i.key.scalar.empty() || m_key == i.key.scalar || m_key.empty());
m_id = m_tree->append_child(m_id);
m_tree->_set_key(m_id, m_seed);
m_seed.str = nullptr;
m_seed.len = NONE;
}
else if(m_seed.len != NONE) // we have a seed index: create a child at that position
{
RYML_ASSERT(m_tree->num_children(m_id) == m_seed.len);
m_id = m_tree->append_child(m_id);
m_seed.str = nullptr;
m_seed.len = NONE;
}
else
{
RYML_ASSERT(valid());
}
}
inline void _apply(csubstr const& v)
{
m_tree->_set_val(m_id, v);
}
inline void _apply(NodeScalar const& v)
{
m_tree->_set_val(m_id, v);
}
inline void _apply(NodeInit const& i)
{
m_tree->_set(m_id, i);
}
public:
inline NodeRef insert_child(NodeRef after)
{
_C4RV();
RYML_ASSERT(after.m_tree == m_tree);
NodeRef r(m_tree, m_tree->insert_child(m_id, after.m_id));
return r;
}
inline NodeRef insert_child(NodeInit const& i, NodeRef after)
{
_C4RV();
RYML_ASSERT(after.m_tree == m_tree);
NodeRef r(m_tree, m_tree->insert_child(m_id, after.m_id));
r._apply(i);
return r;
}
inline NodeRef prepend_child()
{
_C4RV();
NodeRef r(m_tree, m_tree->insert_child(m_id, NONE));
return r;
}
inline NodeRef prepend_child(NodeInit const& i)
{
_C4RV();
NodeRef r(m_tree, m_tree->insert_child(m_id, NONE));
r._apply(i);
return r;
}
inline NodeRef append_child()
{
_C4RV();
NodeRef r(m_tree, m_tree->append_child(m_id));
return r;
}
inline NodeRef append_child(NodeInit const& i)
{
_C4RV();
NodeRef r(m_tree, m_tree->append_child(m_id));
r._apply(i);
return r;
}
public:
inline NodeRef insert_sibling(NodeRef const after)
{
_C4RV();
RYML_ASSERT(after.m_tree == m_tree);
NodeRef r(m_tree, m_tree->insert_sibling(m_id, after.m_id));
return r;
}
inline NodeRef insert_sibling(NodeInit const& i, NodeRef const after)
{
_C4RV();
RYML_ASSERT(after.m_tree == m_tree);
NodeRef r(m_tree, m_tree->insert_sibling(m_id, after.m_id));
r._apply(i);
return r;
}
inline NodeRef prepend_sibling()
{
_C4RV();
NodeRef r(m_tree, m_tree->prepend_sibling(m_id));
return r;
}
inline NodeRef prepend_sibling(NodeInit const& i)
{
_C4RV();
NodeRef r(m_tree, m_tree->prepend_sibling(m_id));
r._apply(i);
return r;
}
inline NodeRef append_sibling()
{
_C4RV();
NodeRef r(m_tree, m_tree->append_sibling(m_id));
return r;
}
inline NodeRef append_sibling(NodeInit const& i)
{
_C4RV();
NodeRef r(m_tree, m_tree->append_sibling(m_id));
r._apply(i);
return r;
}
public:
inline void remove_child(NodeRef & child)
{
_C4RV();
RYML_ASSERT(has_child(child));
RYML_ASSERT(child.parent().id() == id());
m_tree->remove(child.id());
child.clear();
}
//! remove the nth child of this node
inline void remove_child(size_t pos)
{
_C4RV();
RYML_ASSERT(pos >= 0 && pos < num_children());
size_t child = m_tree->child(m_id, pos);
RYML_ASSERT(child != NONE);
m_tree->remove(child);
}
//! remove a child by name
inline void remove_child(csubstr key)
{
_C4RV();
size_t child = m_tree->find_child(m_id, key);
RYML_ASSERT(child != NONE);
m_tree->remove(child);
}
public:
/** change the node's position within its parent */
inline void move(NodeRef const after)
{
_C4RV();
m_tree->move(m_id, after.m_id);
}
/** move the node to a different parent, which may belong to a different
* tree. When this is the case, then this node's tree pointer is reset to
* the tree of the parent node. */
inline void move(NodeRef const parent, NodeRef const after)
{
_C4RV();
RYML_ASSERT(parent.m_tree == after.m_tree);
if(parent.m_tree == m_tree)
{
m_tree->move(m_id, parent.m_id, after.m_id);
}
else
{
parent.m_tree->move(m_tree, m_id, parent.m_id, after.m_id);
m_tree = parent.m_tree;
}
}
inline NodeRef duplicate(NodeRef const parent, NodeRef const after) const
{
_C4RV();
RYML_ASSERT(parent.m_tree == after.m_tree);
if(parent.m_tree == m_tree)
{
size_t dup = m_tree->duplicate(m_id, parent.m_id, after.m_id);
NodeRef r(m_tree, dup);
return r;
}
else
{
size_t dup = parent.m_tree->duplicate(m_tree, m_id, parent.m_id, after.m_id);
NodeRef r(parent.m_tree, dup);
return r;
}
}
inline void duplicate_children(NodeRef const parent, NodeRef const after) const
{
_C4RV();
RYML_ASSERT(parent.m_tree == after.m_tree);
if(parent.m_tree == m_tree)
{
m_tree->duplicate_children(m_id, parent.m_id, after.m_id);
}
else
{
parent.m_tree->duplicate_children(m_tree, m_id, parent.m_id, after.m_id);
}
}
private:
template<class Nd>
struct child_iterator
{
Tree * m_tree;
size_t m_child_id;
using value_type = NodeRef;
child_iterator(Tree * t, size_t id) : m_tree(t), m_child_id(id) {}
child_iterator& operator++ () { RYML_ASSERT(m_child_id != NONE); m_child_id = m_tree->next_sibling(m_child_id); return *this; }
child_iterator& operator-- () { RYML_ASSERT(m_child_id != NONE); m_child_id = m_tree->prev_sibling(m_child_id); return *this; }
Nd operator* () const { return Nd(m_tree, m_child_id); }
Nd operator-> () const { return Nd(m_tree, m_child_id); }
bool operator!= (child_iterator that) const { RYML_ASSERT(m_tree == that.m_tree); return m_child_id != that.m_child_id; }
bool operator== (child_iterator that) const { RYML_ASSERT(m_tree == that.m_tree); return m_child_id == that.m_child_id; }
};
public:
using iterator = child_iterator< NodeRef>;
using const_iterator = child_iterator<const NodeRef>;
inline iterator begin() { return iterator(m_tree, m_tree->first_child(m_id)); }
inline iterator end () { return iterator(m_tree, NONE); }
inline const_iterator begin() const { return const_iterator(m_tree, m_tree->first_child(m_id)); }
inline const_iterator end () const { return const_iterator(m_tree, NONE); }
private:
template<class Nd>
struct children_view_
{
using n_iterator = child_iterator<Nd>;
n_iterator b, e;
inline children_view_(n_iterator const& b_, n_iterator const& e_) : b(b_), e(e_) {}
inline n_iterator begin() const { return b; }
inline n_iterator end () const { return e; }
};
public:
using children_view = children_view_< NodeRef>;
using const_children_view = children_view_<const NodeRef>;
children_view children() { return children_view(begin(), end()); }
const_children_view children() const { return const_children_view(begin(), end()); }
children_view siblings() { if(is_root()) { return children_view(end(), end()); } else { size_t p = get()->m_parent; return children_view(iterator(m_tree, m_tree->get(p)->m_first_child), iterator(m_tree, NONE)); } }
const_children_view siblings() const { if(is_root()) { return const_children_view(end(), end()); } else { size_t p = get()->m_parent; return const_children_view(const_iterator(m_tree, m_tree->get(p)->m_first_child), const_iterator(m_tree, NONE)); } }
public:
/** visit every child node calling fn(node) */
template<class Visitor> bool visit(Visitor fn, size_t indentation_level=0, bool skip_root=true);
/** visit every child node calling fn(node) */
template<class Visitor> bool visit(Visitor fn, size_t indentation_level=0, bool skip_root=true) const;
/** visit every child node calling fn(node, level) */
template<class Visitor> bool visit_stacked(Visitor fn, size_t indentation_level=0, bool skip_root=true);
/** visit every child node calling fn(node, level) */
template<class Visitor> bool visit_stacked(Visitor fn, size_t indentation_level=0, bool skip_root=true) const;
#undef _C4RV
};
//-----------------------------------------------------------------------------
template<class T>
inline void write(NodeRef *n, T const& v)
{
n->set_val_serialized(v);
}
template<class T>
inline bool read(NodeRef const& n, T *v)
{
return from_chars(n.val(), v);
}
//-----------------------------------------------------------------------------
template<class T> void read(NodeRef const& n, std::vector<T> *v){
for(size_t i=0; i<n.num_children(); ++i){
T e;
n[i]>>e;
v->push_back(e);
}
}
template<class T> void write(NodeRef *n, std::vector<T> const& v){
*n |= c4::yml::SEQ;
for(auto e:v){
n->append_child() << e;
}
}
//-----------------------------------------------------------------------------
template<class Visitor>
bool NodeRef::visit(Visitor fn, size_t indentation_level, bool skip_root)
{
return const_cast<NodeRef const*>(this)->visit(fn, indentation_level, skip_root);
}
template<class Visitor>
bool NodeRef::visit(Visitor fn, size_t indentation_level, bool skip_root) const
{
size_t increment = 0;
if( ! (is_root() && skip_root))
{
if(fn(this, indentation_level))
{
return true;
}
++increment;
}
if(has_children())
{
for(auto ch : children())
{
if(ch.visit(fn, indentation_level + increment)) // no need to forward skip_root as it won't be root
{
return true;
}
}
}
return false;
}
template<class Visitor>
bool NodeRef::visit_stacked(Visitor fn, size_t indentation_level, bool skip_root)
{
return const_cast< NodeRef const* >(this)->visit_stacked(fn, indentation_level, skip_root);
}
template<class Visitor>
bool NodeRef::visit_stacked(Visitor fn, size_t indentation_level, bool skip_root) const
{
size_t increment = 0;
if( ! (is_root() && skip_root))
{
if(fn(this, indentation_level))
{
return true;
}
++increment;
}
if(has_children())
{
fn.push(this, indentation_level);
for(auto ch : children())
{
if(ch.visit(fn, indentation_level + increment)) // no need to forward skip_root as it won't be root
{
fn.pop(this, indentation_level);
return true;
}
}
fn.pop(this, indentation_level);
}
return false;
}
} // namespace yml
} // namespace c4
#ifdef __GNUC__
# pragma GCC diagnostic pop
#endif
#endif /* _C4_YML_NODE_HPP_ */