-
Notifications
You must be signed in to change notification settings - Fork 2
/
main.py
executable file
·124 lines (101 loc) · 3.85 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
from __future__ import print_function
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import torchvision
import torchvision.transforms as transforms
import os
import argparse
import config as cfg
from models import *
from loss_function import *
from data import *
# choose GPU
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
parser = argparse.ArgumentParser(description='PyTorch Training')
parser.add_argument('--lr', default=0.01, type=float, help='learning rate')
parser.add_argument('--resume', '-r', action='store_true', help='resume from checkpoint')
args = parser.parse_args()
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
# Data
print('==> Preparing data..')
# data = MNIST('/data/qinyuxiang/Dataset/MNIST')
data = SVHN('/data/qinyuxiang/Paper_test/cifar_pytorch/data')
trainloader = data.getTrainLoader()
testloader = data.getTestLoader()
# Model
print('==> Building model..')
net = VGG(cfg.vgg_set[data.dataName])
net = net.to(device)
if device == 'cuda':
net = torch.nn.DataParallel(net)
cudnn.benchmark = True
if args.resume:
# Load checkpoint.
print('==> Resuming from checkpoint..')
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'
checkpoint = torch.load('./checkpoint/ckpt.t7')
net.load_state_dict(checkpoint['net'])
best_acc = checkpoint['acc']
start_epoch = checkpoint['epoch']
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=args.lr, momentum=0.9, weight_decay=5e-4)
# Training
def train(epoch):
print('\nEpoch: %d' % epoch)
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs, features = net(inputs)
cross_entropy_loss = criterion(outputs, targets)
pairwise_loss = pairwise_gaussian_loss(euclidean_dist_all(features), targets, data.numClass, beta=cfg.BETA)
# pairwise_loss = pairwise_sigmoid_loss(euclidean_dist_all(features), targets, data.numClass, aerfa=cfg.AERFA)
# pairwise_loss = pairwise_cauchy_loss(euclidean_dist_all(features), targets, data.numClass, gamma=cfg.GAMMA)
# pairwise_loss = pairwise_hinge_loss(euclidean_dist_all(features), targets, data.numClass)
loss = cross_entropy_loss + cfg.PARM * pairwise_loss
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
if(batch_idx % 50 == 0):
print('[Epoch:%d] Learning Rate: %.05f | Loss: %.03f | Acc: %.3f '
% (epoch, args.lr, train_loss / (batch_idx + 1), 100. * correct / total))
def test(epoch):
global best_acc
net.eval()
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs, features = net(inputs)
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
# Save checkpoint.
acc = 100.*correct/total
print('current accuracy: %.3f | best accuracy: %.3f' % (acc, best_acc))
if acc > best_acc:
print('Saving..')
state = {
'net': net.state_dict(),
'acc': acc,
'epoch': epoch,
}
if not os.path.isdir('checkpoint'):
os.mkdir('checkpoint')
torch.save(state, './checkpoint/ckpt.t7')
best_acc = acc
for epoch in range(start_epoch, start_epoch+50):
train(epoch)
test(epoch)