-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
168 lines (130 loc) · 4.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
import os
import hydra
from omegaconf import OmegaConf
import pytorch_lightning as pl
from pytorch_lightning import loggers
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping
from transformers import AutoTokenizer
from source.callback.PredictionWriter import PredictionWriter
from source.datamodule.TecDataModule import TeCDataModule
from source.helper.EvalHelper import EvalHelper
from source.model.TeCModel import TecModel
def get_logger(params, fold):
return loggers.TensorBoardLogger(
save_dir=params.log.dir,
name=f"{params.model.name}_{params.data.name}_{fold}_exp"
)
def get_model_checkpoint_callback(params, fold):
return ModelCheckpoint(
monitor="val_Wei-F1",
dirpath=params.model_checkpoint.dir,
filename=f"{params.model.name}_{params.data.name}_{fold}",
save_top_k=1,
save_weights_only=True,
mode="max"
)
def get_early_stopping_callback(params):
return EarlyStopping(
monitor='val_Wei-F1',
patience=params.trainer.patience,
min_delta=params.trainer.min_delta,
mode='max'
)
def get_tokenizer(hparams):
tokenizer = AutoTokenizer.from_pretrained(
hparams.tokenizer.architecture
)
if hparams.tokenizer.architecture == "gpt2":
tokenizer.add_special_tokens({'pad_token': '[PAD]'})
return tokenizer
def fit(params):
for fold in params.data.folds:
print(f"Fitting {params.model.name} over {params.data.name} (fold {fold}) with fowling params\n"
f"{OmegaConf.to_yaml(params)}\n")
# Initialize a trainer
trainer = pl.Trainer(
fast_dev_run=params.trainer.fast_dev_run,
max_epochs=params.trainer.max_epochs,
precision=params.trainer.precision,
gpus=params.trainer.gpus,
progress_bar_refresh_rate=params.trainer.progress_bar_refresh_rate,
logger=get_logger(params, fold),
callbacks=[
get_model_checkpoint_callback(params, fold), # checkpoint_callback
get_early_stopping_callback(params), # early_stopping_callback
]
)
# Train the ⚡ model
trainer.fit(
model=TecModel(params.model),
datamodule=TeCDataModule(params.data, get_tokenizer(params.model), fold=fold)
)
def test(params):
for fold in params.data.folds:
print(f"Testing {params.model.name} over {params.data.name} (fold {fold}) with fowling params\n"
f"{OmegaConf.to_yaml(params)}\n")
# load model checkpoint
model = TecModel.load_from_checkpoint(
checkpoint_path=f"{params.model_checkpoint.dir}{params.model.name}_{params.data.name}_{fold}.ckpt"
)
model.hparams.stat.name = f"{params.model.name}_{params.data.name}_{fold}.stat"
# trainer
trainer = pl.Trainer(
gpus=params.trainer.gpus
)
# testing
trainer.test(
model=model,
datamodule=TeCDataModule(params.data, get_tokenizer(params.model), fold=fold)
)
def predict(params):
for fold in params.data.folds:
print(f"Predicting {params.model.name} over {params.data.name} (fold {fold}) with fowling params\n"
f"{OmegaConf.to_yaml(params)}\n")
# data
dm = TeCDataModule(params.data, get_tokenizer(params.model), fold=fold)
dm.prepare_data()
dm.setup("predict")
# model
model = TecModel.load_from_checkpoint(
checkpoint_path=f"{params.model_checkpoint.dir}{params.model.name}_{params.data.name}_{fold}.ckpt"
)
params.representation.name = f"{params.model.name}_{params.data.name}_{fold}.rpr"
# trainer
trainer = pl.Trainer(
gpus=params.trainer.gpus,
callbacks=[PredictionWriter(params.representation)]
)
trainer.predict(
model=model,
datamodule=dm,
)
def z_shot_cls(params):
for fold in params.data.folds:
print(f"Predicting {params.model.name} over {params.data.name} (fold {fold}) with fowling params\n"
f"{OmegaConf.to_yaml(params)}\n")
model = TecModel(params.model)
model.hparams.stat.name = f"{params.model.name}_{params.data.name}_{fold}.stat"
# trainer
trainer = pl.Trainer(
gpus=params.trainer.gpus
)
# testing
trainer.test(
model=model,
datamodule=TeCDataModule(params.data, get_tokenizer(params.model), fold=fold)
)
@hydra.main(config_path="settings/", config_name="settings.yaml")
def perform_tasks(params):
os.chdir(hydra.utils.get_original_cwd())
OmegaConf.resolve(params)
if "fit" in params.tasks:
fit(params)
if "test" in params.tasks:
test(params)
if "predict" in params.tasks:
predict(params)
if "z-shot-cls" in params.tasks:
z_shot_cls(params)
if __name__ == '__main__':
perform_tasks()