-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrip_plots.py
143 lines (124 loc) · 5.96 KB
/
trip_plots.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import matplotlib
import numpy as np
import pandas as pd
from iss4e.db import mysql
from iss4e.util.config import load_config
from scipy import stats
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from pytz import timezone
config = load_config()
participants = pd.read_excel("participant map.xlsx", header=[1])
female_staff = participants.iloc[1:8][["Email", "IMEI"]]
male_staff = participants.iloc[10:16][["Email", "IMEI"]]
female_students = participants.iloc[18:23][["Email", "IMEI"]]
male_students = participants.iloc[25:32][["Email", "IMEI"]]
eastern = timezone('Canada/Eastern')
def get_trips(l):
trips = []
for imei in l["IMEI"]:
cursor.execute("SELECT start,end from trips where imei={imei}".format(imei=imei))
result = cursor.fetchall()
trips += [(start.replace(tzinfo=timezone('UTC')).astimezone(eastern),
end.replace(tzinfo=timezone('UTC')).astimezone(eastern)) for (start, end) in result]
return trips
with mysql.connect(**config["webike.mysql"]) as mysql_client:
cursor = mysql_client.cursor()
fstu_trips = get_trips(female_students)
fsta_trips = get_trips(female_staff)
mstu_trips = get_trips(male_students)
msta_trips = get_trips(male_staff)
ftrips = fstu_trips + fsta_trips
mtrips = mstu_trips + msta_trips
staff = fsta_trips + msta_trips
students = fstu_trips + mstu_trips
print("no. trips: {trips}".format(trips=str(len(ftrips + mtrips))))
print("no. trips male: {trips}".format(trips=str(len(mtrips))))
print("no. trips female: {trips}".format(trips=str(len(ftrips))))
print("no. trips staff: {trips}".format(trips=str(len(staff))))
print("no. trips students: {trips}".format(trips=str(len(students))))
print("avg no. trips: {trips}".format(trips=str(
len(ftrips + mtrips) / (len(male_staff) + len(male_students) + len(female_staff) + len(female_students)))))
print("avg no. trips male: {trips}".format(trips=str(len(mtrips) / (len(male_staff) + len(male_students)))))
print("avg no. trips female: {trips}".format(trips=str(len(ftrips) / (len(female_staff) + len(female_students)))))
print("avg no. trips staff: {trips}".format(trips=str(len(staff) / (len(female_staff) + len(male_staff)))))
print("avg no. trips students: {trips}".format(
trips=str(len(students) / (len(male_students) + len(female_students)))))
figsize = (4,2.5)
dpi = 720
fig1 = plt.figure(figsize=figsize, dpi=dpi)
data = [[start.hour for (start, end) in ftrips], [start.hour for (start, end) in mtrips]]
print(stats.ranksums(data[0],data[1]))
plt.hist(data, bins=range(25), normed=True,
label=["female", "male"])
plt.xticks(range(0, 24, 2))
plt.xlabel("hour of day")
plt.ylabel("probability density")
plt.legend()
plt.tight_layout()
plt.savefig("trip_start_by_gender.png")
fig2 = plt.figure(figsize=figsize, dpi=dpi)
data = [[start.hour for (start, end) in staff], [start.hour for (start, end) in students]]
print(stats.ranksums(data[0], data[1]))
plt.hist(data, bins=range(25), normed=True,
label=["staff/faculty", "students"])
plt.xticks(range(0, 24, 2))
plt.xlabel("hour of day")
plt.ylabel("probability density")
plt.legend()
plt.tight_layout()
plt.savefig("trip_start_by_occupation.png")
fig3 = plt.figure(figsize=figsize, dpi=dpi)
data = [start.hour for (start, end) in ftrips + mtrips]
plt.hist(data, bins=range(25), normed=True, rwidth=0.9, label="all participants")
plt.xticks(range(0, 24,2 ))
plt.xlabel("hour of day")
plt.ylabel("probability density")
plt.legend()
plt.tight_layout()
plt.savefig("trip_start_all.png")
fig4 = plt.figure(figsize=figsize, dpi=dpi)
data = [(end - start).total_seconds() / 60 for (start, end) in ftrips + mtrips]
print("avg dur trips: {trips}".format(trips=np.mean(data)))
bins = [b for b in range(0, int(max(data)) + 5, 5)]
bins[0] = 3
plt.hist(data, bins=bins, zorder=2, rwidth=0.9, label="all participants")
plt.hist(data, bins=bins, cumulative=True, zorder=1, rwidth=0.9, label="all participants (cum.)")
print("mean: {mean}".format(mean=np.mean(data)))
print("std: {std}".format(std=np.std(data)))
plt.xlabel("average trip duration (min)")
plt.ylabel("frequency")
plt.legend(loc=1)
plt.tight_layout()
plt.savefig("trip_duration_cum.png")
fig5 = plt.figure(figsize=figsize, dpi=dpi)
bins[0] = 0
data = [[(end - start).total_seconds() / 60 for (start, end) in trips] for trips in [ftrips, mtrips]]
print(stats.ranksums(data[0], data[1]))
print("avg dur trips male: {trips}".format(trips=np.mean(data[1])))
print("avg dur trips female: {trips}".format(trips=np.mean(data[0])))
plt.hist(data, bins=bins, normed=True, label=["female", "male"])
plt.xlabel("average trip duration (min)")
plt.ylabel("probability")
plt.legend()
plt.tight_layout()
plt.savefig("trip_duration_by_gender.png")
fig6 = plt.figure(figsize=figsize, dpi=dpi)
data = [[(end - start).total_seconds() / 60 for (start, end) in trips] for trips in [staff, students]]
print(stats.ranksums(data[0], data[1]))
print("avg dur trips staff: {trips}".format(trips=np.mean(data[0])))
print("avg dur trips students: {trips}".format(trips=np.mean(data[1])))
plt.hist(data, bins=bins, normed=True, label=["staff/faculty", "students"])
plt.xlabel("average trip duration (min)")
plt.ylabel("probability density")
plt.legend()
plt.tight_layout()
plt.savefig("trip_duration_by_occupation.png")
fig7 = plt.figure(figsize=figsize, dpi=dpi)
data = [start.month for (start, end) in ftrips + mtrips]
plt.hist(data, bins=range(1,14), normed=True, zorder=2, rwidth=0.9, label=["all participants"])
plt.xticks(range(1,13),["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"], rotation=30, ha="left")
plt.ylabel("probability density")
plt.legend()
plt.tight_layout()
plt.savefig("trip_by_month.png")