-
Notifications
You must be signed in to change notification settings - Fork 0
/
py21.py
1178 lines (920 loc) · 40.7 KB
/
py21.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import matplotlib.pyplot as plt
import numpy as np
import cv2
import os
import nnfs
import pickle
import copy
nnfs.init()
# Dense layer
class Layer_Dense:
# Layer initialization
def __init__(self, n_inputs, n_neurons,
weight_regularizer_l1=0, weight_regularizer_l2=0,
bias_regularizer_l1=0, bias_regularizer_l2=0):
# Initialize weights and biases
self.weights = 0.01 * np.random.randn(n_inputs, n_neurons)
self.biases = np.zeros((1, n_neurons))
# Set regularization strength
self.weight_regularizer_l1 = weight_regularizer_l1
self.weight_regularizer_l2 = weight_regularizer_l2
self.bias_regularizer_l1 = bias_regularizer_l1
self.bias_regularizer_l2 = bias_regularizer_l2
# Forward pass
def forward(self, inputs, training):
# Remember input values
self.inputs = inputs
# Calculate output values from inputs, weights and biases
self.output = np.dot(inputs, self.weights) + self.biases
# Backward pass
def backward(self, dvalues):
# Gradients on parameters
self.dweights = np.dot(self.inputs.T, dvalues)
self.dbiases = np.sum(dvalues, axis=0, keepdims=True)
# Gradients on regularization
# L1 on weights
if self.weight_regularizer_l1 > 0:
dL1 = np.ones_like(self.weights)
dL1[self.weights < 0] = -1
self.dweights += self.weight_regularizer_l1 * dL1
# L2 on weights
if self.weight_regularizer_l2 > 0:
self.dweights += 2 * self.weight_regularizer_l2 * self.weights
# L1 on biases
if self.bias_regularizer_l1 > 0:
dL1 = np.ones_like(self.biases)
dL1[self.biases < 0] = -1
self.dbiases += self.bias_regularizer_l1 * dL1
# L2 on biases
if self.bias_regularizer_l2 > 0:
self.dbiases += 2 * self.bias_regularizer_l2 * self.biases
# Gradient on values
self.dinputs = np.dot(dvalues, self.weights.T)
# Retrieve layer parameters
def get_parameters(self):
return self.weights, self.biases
# Set weights and biases in a layer instance
def set_parameters(self, weights, biases):
self.weights = weights
self.biases = biases
# Dropout
class Layer_Dropout:
# Init
def __init__(self, rate):
# Store rate, we invert it as for example for dropout
# of 0.1 we need success rate of 0.9
self.rate = 1 - rate
# Forward pass
def forward(self, inputs, training):
# Save input values
self.inputs = inputs
# If not in training mode, return values
if not training:
self.output = inputs.copy()
return
# Generate and save scaled mask
self.binary_mask = np.random.binomial(1, self.rate, size=inputs.shape) / self.rate
# Apply mas to output values
self.output = inputs * self.binary_mask
# Backward pass
def backward(self, dvalues):
# Gradient on values
self.dinputs = dvalues * self.binary_mask
# Input "layer"
class Layer_Input:
# Forward pass
def forward(self, inputs, training):
self.output = inputs
# ReLU activation
class Activation_ReLU:
# Forward pass
def forward(self, inputs, training):
# Remember input values
self.inputs = inputs
# Calculate output values from inputs
self.output = np.maximum(0, inputs)
# Backward pass
def backward(self, dvalues):
# Since we need to modify original variable,
# let's make a copy of values first
self.dinputs = dvalues.copy()
# Zero gradient where input values were negative
self.dinputs[self.inputs <= 0] = 0
# Common loss class
class Loss:
# Set/remember trainable layers
def remember_trainable_layers(self, trainable_layers):
self.trainable_layers = trainable_layers
# Calculates the data and regularization losses
# given model output and ground truth values
def calculate(self, output, y, *, include_regularization=False):
# Calculate sample losses
sample_losses = self.forward(output, y)
# Calculate mean loss
data_loss = np.mean(sample_losses)
# Add accumulated sum of losses and sample count
self.accumulated_sum += np.sum(sample_losses)
self.accumulated_count += len(sample_losses)
# If just data loss, return it
if not include_regularization:
return data_loss
# Return the data and regularization losses
return data_loss, self.regularization_loss()
# Regularization loss calculation
def regularization_loss(self):
# 0 by default
regularization_loss = 0
# Calculate regularization loss
# Iterate all trainable layers
for layer in self.trainable_layers:
# L1 regularization - weights
# Calculate only when factor greater then 0
if layer.weight_regularizer_l1 > 0:
regularization_loss += layer.weight_regularizer_l1 * np.sum(np.abs(layer.weights))
# L2 regularization - weights
if layer.weight_regularizer_l2 > 0:
regularization_loss += layer.weight_regularizer_l2 * np.sum(layer.weights * layer.weights)
# L1 regularization - biases
# Calculate only when factor greater than 0
if layer.bias_regularizer_l1 > 0:
regularization_loss += layer.bias_regularizer_l1 * np.sum(np.abs(layer.biases))
# L2 regularization - biases
if layer.bias_regularizer_l2 > 0:
regularization_loss += layer.bias_regularizer_l2 * np.sum(layer.biases * layer.biases)
return regularization_loss
# Calculates accumulated loss
def calculate_accumulated(self, *, include_regularization=False):
# Calculate mean loss
data_loss = self.accumulated_sum / self.accumulated_count
# If just data loss - retunr it
if not include_regularization:
return data_loss
# Return the data and regulartization losses
return data_loss, self.regularization_loss()
# Reset variables for accumulated loss
def new_pass(self):
self.accumulated_sum = 0
self.accumulated_count = 0
# Softmax activation
class Activation_Softmax:
# Calculate predictions for outputs
def predictions(self, outputs):
return np.argmax(outputs, axis=1)
# Forward pass
def forward(self, inputs, training):\
# Remember input values
self.inputs = inputs
# Get unnormalized probabilities
exp_values = np.exp(inputs - np.max(inputs, axis=1, keepdims=True))
# Normalizae them for each sample
probabilities = exp_values / np.sum(exp_values, axis=1, keepdims=True)
self.output = probabilities
# Backward pass
def backward(self, dvalues):
# Create uninitialized array
self.dinputs = np.empty_like(dvalues)
# Enumerate outputs and gradients
for index, (single_output, single_dvalues) in enumerate(zip(self.output, dvalues)):
# Flatten output array
single_output = single_output.reshape(-1, 1)
# Calculate Jacobian matrix of the output
jacobian_matrix = np.diagflat(single_output) - np.dot(single_output, single_output.T)
# Calculate sample-wise gradient
# and add it to the array of sample gradients
self.dinputs[index] = np.dot(jacobian_matrix, single_dvalues)
# Cross-entropy loss
class Loss_CategoricalCrossentropy(Loss):
# Forward pass
def forward(self, y_pred, y_true):
# Number of samples in a batch
samples = len(y_pred)
# Clip data to prevent division by 0
# Clip both sides to not drag mean towards any value
y_pred_clipped = np.clip(y_pred, 1e-7, 1 - 1e-7)
# Probabilities for target values
# only if categorical labels
if len(y_true.shape) == 1:
correct_confidences = y_pred_clipped[range(samples), y_true]
# mask values - only for one-hot encoded labels
elif len(y_true.shape) == 2:
correct_confidences = np.sum(y_pred_clipped * y_true, axis=1)
# Losses
negative_log_likelihoods = -np.log(correct_confidences)
return negative_log_likelihoods
# Backward pass
def backward(self, dvalues, y_true):
# Number of samples
samples = len(dvalues)
# Number of labels in every sample
# We'll use the first sample to count them
labels = len(dvalues[0])
# If labels are sparse, turn them into one-hot vector
if len(y_true.shape) == 1:
y_true = np.eye(labels)[y_true]
# Calculate gradient
self.dinputs = -y_true / dvalues
# Normalize gradient
self.dinputs = self.dinputs / samples
# Softmax classifier - combined Softmax activation
# and cross-entropy loss for faster backward step
class Activation_Softmax_Loss_CategoricalCrossentropy():
# Backward pass
def backward(self, y_pred, y_true):
# Number of samples
samples = len(y_pred)
# If labels are one-hot encoded,
# turn them into discrete values
if len(y_true.shape) == 2:
y_true = np.argmax(y_true, axis=1)
# Copy so we can safely modify
self.dinputs = y_pred.copy()
# Calculate gradient
self.dinputs[range(samples), y_true] -= 1
# Normalize gradient
self.dinputs = self.dinputs / samples
# Sigmoid activation
class Activation_Sigmoid:
# Calculate predictions for outputs
def predictions(self, outputs):
return (outputs > 0.5) * 1
# Forward pass
def forward(self, inputs, training):
# Save input and calculate/save output
# of the sigmoid funtion
self.inputs = inputs
self.output = 1 / (1 + np.exp(-inputs))
def backward(self, dvalues):
# derivative - calculate from output of the sigmoid function
self.dinputs = dvalues * (1 - self.output) * self.output
# Binary cross-entropy loss
class Loss_BinaryCrossentropy(Loss):
# Forward pass
def forward(self, y_pred, y_true):
# Clip data to prevent division by 0
# Clip both sides to not drag mean towards any value
y_pred_clipped = np.clip(y_pred, 1e-7, 1 - 1e-7)
# Calculate sample-wise loss
sample_losses = -(y_true * np.log(y_pred_clipped) + (1 - y_true) * np.log(1 - y_pred_clipped))
sample_losses = np.mean(sample_losses, axis=-1)
# Return losses
return sample_losses
# Backward pass
def backward(self, y_pred, y_true):
# Number of samples
samples = len(y_pred)
# Number of outputs in every sample
# We'll use the first sample to count them
outputs = len(y_pred[0])
# Clip data to prevent division by 0
# Clip both sides to not drag mean towards any value
clipped_y_pred = np.clip(y_pred, 1e-7, 1 - 1e-7)
# Calculate gradient
self.dinputs = -(y_true / clipped_y_pred - (1 - y_true) / (1 - clipped_y_pred)) / outputs
# Normalize gradient
self.dinputs = self.dinputs / samples
# SGD optimizer (Stochastic Gradient Descent)
class Optimizer_SGD:
# Initialize optimizer - set settings,
# learning rate of 1. is default for this optimizer
def __init__(self, learning_rate=1, decay=0., momentum=0.):
self.learning_rate = learning_rate
self.current_learning_rate = learning_rate
self.decay = decay
self.iterations = 0
self.momentum = momentum
# Call once before any parameter updates
def pre_update_params(self):
if self.decay: # if decay rate is not 0
self.current_learning_rate = self.learning_rate * (1. / (1. + self.decay * self.iterations))
# Update parameters
def update_params(self, layer):
# If we use momentum
if self.momentum:
# If layer does not contain momentum arrays,
# create them, filled with zeroes
if not hasattr(layer, 'weight_momentums'):
layer.weight_momentums = np.zeros_like(layer.weights)
# If there is no momentum array for weights
# the array doesn't exist for biases either
layer.bias_momentums = np.zeros_like(layer.biases)
# Build weight updates with momentum - take previous
# updates multiplied by retain factor and update with
# current gradients
weight_updates = self.momentum * layer.weight_momentums - self.current_learning_rate * layer.dweights
layer.weight_momentums = weight_updates
# Build bias updates
bias_updates = self.momentum * layer.bias_momentums - self.current_learning_rate * layer.dbiases
layer.bias_momentums = bias_updates
# Vanilla SGD updates (as before momentum update)
else:
weight_updates = -self.current_learning_rate * layer.dweights
bias_updates = -self.current_learning_rate * layer.dbiases
# Update weights and biases using either
# vanilla or momentum updates
layer.weights += weight_updates
layer.biases += bias_updates
# Call once after any parameter updates
def post_update_params(self):
self.iterations += 1
# AdaGrad optimizer (Adaptive Gradient)
class Optimizer_Adagrad:
# Initialize optimizer - set settings,
# learning rate of 1. is default for this optimizer
def __init__(self, learning_rate=1., decay=0., epsilon=1e-7):
self.learning_rate = learning_rate
self.current_learning_rate = learning_rate
self.decay = decay
self.iterations = 0
self.epsilon = epsilon
# Call once before any parameter updates
def pre_update_params(self):
if self.decay: # if decay rate is not 0
self.current_learning_rate = self.learning_rate * (1. / (1. + self.decay * self.iterations))
# Update parameters
def update_params(self, layer):
# If layer does not contain cache arrays,
# create them, filled with zeroes
if not hasattr(layer, 'weight_cache'):
layer.weight_cache = np.zeros_like(layer.weights)
layer.bias_cache = np.zeros_like(layer.biases)
# Update cache with squared current gradients
layer.weight_cache += layer.dweights**2
layer.bias_cache += layer.dbiases**2
# Vanilla SGD parameter update + normalization
# with square rooted cache
layer.weights += -self.current_learning_rate * layer.dweights / (np.sqrt(layer.weight_cache) + self.epsilon)
layer.biases += -self.current_learning_rate * layer.dbiases / (np.sqrt(layer.bias_cache) + self.epsilon)
# Call once after any parameter updates
def post_update_params(self):
self.iterations += 1
# RMSprop optimizer
class Optimizer_RMSprop:
# Initialize optimizer - set settings,
def __init__(self, learning_rate=0.001, decay=0., epsilon=1e-7, rho=0.9):
self.learning_rate = learning_rate
self.current_learning_rate = learning_rate
self.decay = decay
self.iterations = 0
self.epsilon = epsilon
self.rho = rho
# Call once before any parameter updates
def pre_update_params(self):
if self.decay: # if decay rate is not 0
self.current_learning_rate = self.learning_rate * (1. / (1. + self.decay * self.iterations))
# Update parameters
def update_params(self, layer):
# If layer does not contain cache arrays,
# create them, filled with zeroes
if not hasattr(layer, 'weight_cache'):
layer.weight_cache = np.zeros_like(layer.weights)
layer.bias_cache = np.zeros_like(layer.biases)
# Update cache with squared current gradients
layer.weight_cache = self.rho * layer.weight_cache + (1 - self.rho) * layer.dweights**2
layer.bias_cache = self.rho * layer.bias_cache + (1 - self.rho) * layer.dbiases**2
# Vanilla SGD parameter update + normalization
# with square rooted cache
layer.weights += -self.current_learning_rate * layer.dweights / (np.sqrt(layer.weight_cache) + self.epsilon)
layer.biases += -self.current_learning_rate * layer.dbiases / (np.sqrt(layer.bias_cache) + self.epsilon)
# Call once after any parameter updates
def post_update_params(self):
self.iterations += 1
# RMSprop optimizer
class Optimizer_Adam:
# Initialize optimizer - set settings,
def __init__(self, learning_rate=0.001, decay=0., epsilon=1e-7, beta_1=0.9, beta_2=0.999):
self.learning_rate = learning_rate
self.current_learning_rate = learning_rate
self.decay = decay
self.iterations = 0
self.epsilon = epsilon
self.beta_1 = beta_1
self.beta_2 = beta_2
# Call once before any parameter updates
def pre_update_params(self):
if self.decay: # if decay rate is not 0
self.current_learning_rate = self.learning_rate * (1. / (1. + self.decay * self.iterations))
# Update parameters
def update_params(self, layer):
# If layer does not contain cache arrays,
# create them, filled with zeroes
if not hasattr(layer, 'weight_cache'):
layer.weight_momentums = np.zeros_like(layer.weights)
layer.weight_cache = np.zeros_like(layer.weights)
layer.bias_momentums = np.zeros_like(layer.biases)
layer.bias_cache = np.zeros_like(layer.biases)
# Update momentum with current gradients
layer.weight_momentums = self.beta_1 * layer.weight_momentums + (1 - self.beta_1) * layer.dweights
layer.bias_momentums = self.beta_1 * layer.bias_momentums + (1 - self.beta_1) * layer.dbiases
# Get corrected momentum
# self.iteration is 0 at first pass
# and we need to start with 1 here
weight_momentums_corrected = layer.weight_momentums / (1 - self.beta_1 ** (self.iterations + 1))
bias_momentums_corrected = layer.bias_momentums / (1 - self.beta_1 ** (self.iterations + 1))
# Update cache with squared current gradients
layer.weight_cache = self.beta_2 * layer.weight_cache + (1 - self.beta_2) * layer.dweights**2
layer.bias_cache = self.beta_2 * layer.bias_cache + (1 - self.beta_2) * layer.dbiases**2
# Get corrected cache
weight_cache_corrected = layer.weight_cache / (1 - self.beta_2 ** (self.iterations + 1))
bias_cache_corrected = layer.bias_cache / (1 - self.beta_2 ** (self.iterations + 1))
# Vanilla SGD parameter update + normalization
# with square rooted cache
layer.weights += -self.current_learning_rate * weight_momentums_corrected / (np.sqrt(weight_cache_corrected) + self.epsilon)
layer.biases += -self.current_learning_rate * bias_momentums_corrected / (np.sqrt(bias_cache_corrected) + self.epsilon)
# Call once after any parameter updates
def post_update_params(self):
self.iterations += 1
# Linear activation
class Activation_Linear:
# Calculate predictions for outputs
def predictions(self, outputs):
return outputs
# Forward pass
def forward(self, inputs, training):
# Just remember values
self.inputs = inputs
self.output = inputs
# Backward pass
def backward(self, dvalues):
# derivative is 1 -> 1 * dvalues = dvalues -> See the chain rule
self.dinputs = dvalues.copy()
# Mean Squared Error Loss
class Loss_MeanSquaredError(Loss): # L2 loss
# Forward pass
def forward(self, y_pred, y_true):
# Calculate loss
sample_losses = np.mean((y_true - y_pred)**2, axis=-1)
# Return losses
return sample_losses
# Backward pass
def backward(self, y_pred, y_true):
# Number of samples
samples = len(y_pred)
# Number of outputs in every sample
# We'll use the first sample to count them
outputs = len(y_pred[0])
# Gradient on values
self.dinputs = -2 * (y_true - y_pred) / outputs
# Normalize gradients
self.dinputs = self.dinputs / samples
# Mean Absolute Error Loss
class Loss_MeanAbsoluteError(Loss): # L1 Loss
# Forward pass
def forward(self, y_pred, y_true):
# Calculate loss
sample_losses = np.mean(np.abs(y_true - y_pred), axis=-1)
# Return losses
return sample_losses
# Backward pass
def backward(self, y_pred, y_true):
# Number of samples
samples = len(y_pred)
# Number of outputs in every sample
# We'll use the first sample to count them
outputs = len(y_pred[0])
# Calculate gradient
self.dinputs = -np.sign(y_true - y_pred) / outputs
# Normalize gradient
self.dinputs = self.dinputs / samples
# Model class
class Model:
def __init__(self):
# Create a list of network objects
self.layers = []
# Softmax classifier's output object
self.softmax_classifier_output = None
# Add objects to the model
def add(self, layer):
self.layers.append(layer)
# Set loss and optimizer
def set(self, *, loss=None, optimizer=None, accuracy=None):
if loss is not None:
self.loss = loss
if optimizer is not None:
self.optimizer = optimizer
if accuracy is not None:
self.accuracy = accuracy
# Finalize the model
def finalize(self):
# Create and set the input layer
self.input_layer = Layer_Input()
# Count all the objects
layer_count = len(self.layers)
# Initialize a list containing trainable layers:
self.trainable_layers = []
# Iterate the objects
for i in range(layer_count):
# If it's the first layer,
# the previous layer object is the input layer
if i == 0:
self.layers[i].prev = self.input_layer
self.layers[i].next = self.layers[i+1]
# All layers except for the first and the last
elif i < layer_count - 1:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.layers[i+1]
# The last layer - the next object is the loss
# Also, let's save aside the reference to the last object
# whose output is the model's output
else:
self.layers[i].prev = self.layers[i-1]
self.layers[i].next = self.loss
self.output_layer_activation = self.layers[i]
# If layer contains an attribute called "weights",
# it's a trainable layer.
# Add it to the list of trainable layers.
# We don't need to check for biases,
# checking for weights is enough
if hasattr(self.layers[i], 'weights'):
self.trainable_layers.append(self.layers[i])
# Update loss object with trainable layers
if self.loss is not None:
self.loss.remember_trainable_layers(self.trainable_layers)
# If output activation is Softmax and
# loss function is Categorical Cross-Entropy
# create an object of combined activation
# and loss function containing
# faster gradient calculation
if isinstance(self.layers[-1], Activation_Softmax) and \
isinstance(self.loss, Loss_CategoricalCrossentropy):
# Create an object of combined activation and loss function
self.softmax_classifier_output = Activation_Softmax_Loss_CategoricalCrossentropy()
# Train the model
def train(self, X, y, *, epochs=1, batch_size=None, print_every=1, validation_data=None):
# Initialize accuracy object
self.accuracy.init(y)
# Default value if batch_size not set
train_steps = 1
# If there is validation data passed,
# set default number of steps for validation data
if validation_data is not None:
validation_steps = 1
# For better readability
X_val, y_val = validation_data
# Calculate number of steps
if batch_size is not None:
train_steps = len(X) // batch_size
# Dividing rounds down. If there are some remining
# data, but not a full batch, this won't include it.
# Therefore, add 1 to include this remining batch
if train_steps * batch_size < len(X):
train_steps += 1
if validation_data is not None:
validation_steps = len(X_val) // batch_size
# Dividing rounds down. If there are some remining
# data, but not a full batch, this won't include it.
# Therefore, add 1 to include this remining batch
if validation_steps * batch_size < len(X_val):
validation_steps += 1
# Main training loop
for epoch in range(1, epochs+1):
# Print epoch number
print(f'epoch: {epoch}')
# Reset accumulated values in loss and accuracy objects
self.loss.new_pass()
self.accuracy.new_pass()
# Iterate over steps
for step in range(train_steps):
# If batch size is not set,
# train using one step and full dataset
if batch_size is None:
batch_X = X
batch_y = y
# Otherwise slice a batch
else:
batch_X = X[step*batch_size:(step+1)*batch_size]
batch_y = y[step*batch_size:(step+1)*batch_size]
# Perform the forward pass
output = self.forward(batch_X, training=True)
# Calculate loss
data_loss, regularization_loss = self.loss.calculate(output, batch_y, include_regularization=True)
loss = data_loss + regularization_loss
# Get predictions and calculate accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, batch_y)
# Perform backword pass
self.backward(output, batch_y)
# Optimize (update parameters)
self.optimizer.pre_update_params()
for layer in self.trainable_layers:
self.optimizer.update_params(layer)
self.optimizer.post_update_params()
# Print a summary
if not step % print_every or step == train_steps - 1:
print(f'step: {step}, ' +
f'acc: {accuracy:.3f}, ' +
f'loss: {loss:.3f} (' +
f'data_loss: {data_loss:.3f}, ' +
f'reg_loss: {regularization_loss:.3f}), ' +
f'lr: {self.optimizer.current_learning_rate}')
# Get and print epoch loss and accuracy
epoch_data_loss, epoch_regularization_loss = self.loss.calculate_accumulated(include_regularization=True)
epoch_loss = epoch_data_loss + epoch_regularization_loss
epoch_accuracy = self.accuracy.calculate_accumulated()
print(f'------------------------------------')
print(f'training, ' +
f'acc: {epoch_accuracy:.3f}, ' +
f'loss: {epoch_loss:.3f} (' +
f'data_loss: {epoch_data_loss:.3f}, ' +
f'reg_loss: {epoch_regularization_loss:.3f}), ' +
f'lr: {self.optimizer.current_learning_rate}')
print(f'------------------------------------')
# If there is the validation data
if validation_data is not None:
# Evaluate the model
self.evaluate(*validation_data, batch_size=batch_size)
# Evaluate the model using passed-in dataset
def evaluate(self, X_val, y_val, *, batch_size=None):
# Default value if batch size not being set
validation_steps = 1
# Calculate the number of steps
if batch_size is not None:
validation_steps = len(X_val) // batch_size
# Dividing rounds down. If there are some remaining
# data, but not a full batch, this won't include it
# Add '1' to include this final not-full batch
if validation_steps * batch_size < len(X_val):
validation_steps += 1
# Reset accumulated values in loss
# and accuracy objects
self.loss.new_pass()
self.accuracy.new_pass()
# Iterate over steps
for step in range(validation_steps):
# If batch size is not set
# train using one step and full dataset
if batch_size is None:
batch_X = X_val
batch_y = y_val
# otherwise slice a batch
else:
batch_X = X_val[step*batch_size:(step+1)*batch_size]
batch_y = y_val[step*batch_size:(step+1)*batch_size]
# Perform the forward pass
output = self.forward(batch_X, training=False)
# Calculate the loss
loss = self.loss.calculate(output, batch_y)
# Get predictions and calculate accuracy
predictions = self.output_layer_activation.predictions(output)
accuracy = self.accuracy.calculate(predictions, batch_y)
# Get and print validation loss and accuracy
validation_loss = self.loss.calculate_accumulated()
validation_accuracy = self.accuracy.calculate_accumulated()
# Print a summary
print(f'validation, ' +
f'acc: {validation_accuracy:.3f}, ' +
f'loss: {validation_loss:.3f}')
print(f'------------------------------------')
# Performs forward pass
def forward(self, X, training):
# Call forward method on the input layer
# This will set the output property that
# the first layer in "prev" object is expecting
self.input_layer.forward(X, training)
# Call forward method of every object in a chain
# Pass output of the previous object as a parameter
for layer in self.layers:
layer.forward(layer.prev.output, training)
# "layer" is now the last object from the list,
# return its output
return layer.output
# Performs backward pass
def backward(self, output, y):
# If softmax classifier
if self.softmax_classifier_output is not None:
# First call backward method
# on the combined activation/loss
# This will set dinputs property
self.softmax_classifier_output.backward(output, y)
# Since we will not call backward method of the last layer
# which is Softmax activation, as we used combined
# activation/loss object, let's set dinputs in this object
self.layers[-1].dinputs = self.softmax_classifier_output.dinputs
# Call backward method going through
# all the objects but last
# in reversed order passing dinputs as a parameter
for layer in reversed(self.layers[:-1]):
layer.backward(layer.next.dinputs)
return
# First call backward method on the loss
# This will set dinputs property that the last
# layer will try to access shortly
self.loss.backward(output, y)
# Call backward method going through all the objects
# in reversed order pasing dinputs as a parameter
for layer in reversed(self.layers):
layer.backward(layer.next.dinputs)
# Retrieves and returns parameters of trainable layers
def get_parameters(self):
# Create a list for parameters
parameters = []
# Iterate trainable layers and get their parameters
for layer in self.trainable_layers:
parameters.append(layer.get_parameters())
# Return a list
return parameters
# Updates the model with new parameters
def set_parameters(self, parameters):
# Itereate over the parameters and layers
# and update each layer with each set of the parameters
for parameter_set, layer in zip(parameters, self.trainable_layers):
layer.set_parameters(*parameter_set)
# Saves the parameters to a file
def save_parameters(self, path):
# Open a file in binary-write mode
# and save parameters to it
with open(path, 'wb') as f:
pickle.dump(self.get_parameters(), f)
# Loads the weights and updates a model instance with them
def load_parameters(self, path):
# Open a file in binary-read mode,
# load weights and update trainable layers
with open(path, 'rb') as f:
self.set_parameters(pickle.load(f))
# Saves the model
def save(self, path):
# Make a deep copy of current model instance
model = copy.deepcopy(self)
# Reset accumulated values in loss and accuracy objects
model.loss.new_pass()
model. accuracy.new_pass()
# Remove data from input layer
# and gradients from the loss object
model.input_layer.__dict__.pop('output', None)
model.loss.__dict__.pop('dinputs', None)
# For each layer remove inputs, output and dinputs properties
for layer in model.layers:
for property in ['inputs', 'output', 'dinputs', 'dweights', 'dbiases']:
layer.__dict__.pop(property, None)
# Open a file in binary-write mode and save the model
with open(path, 'wb') as f:
pickle.dump(model, f)
# Loads and returns a model
@staticmethod
def load(path):
# Open file in binary-read mode, load a model
with open(path, 'rb') as f:
model = pickle.load(f)
# Return a model
return model
# Predicts on the samples
def predict(self, X, *, batch_size=None):
# Default value if batch size not being set
prediction_steps = 1
# Calculate the number of steps
if batch_size is not None:
prediction_steps = len(X) // batch_size
if prediction_steps * batch_size < len(X):
prediction_steps += 1
# Model output
output = []
# Iterate over steps
for step in range(prediction_steps):
# If batch size is not set, then
# train using one step and full dataset
if batch_size is None:
batch_X = X
# Otherwise slice a batch
else:
batch_X = X[step*batch_size:(step+1)*batch_size]
# Perform the forward pass
batch_output = self.forward(batch_X, training=False)
# Append batch prediction to the list of predictions
output.append(batch_output)
# Stack and return results
return np.vstack(output)
# Common accuracy class
class Accuracy:
# Calculates an accuracy
# given predictions and ground truth values