-
Notifications
You must be signed in to change notification settings - Fork 0
/
caloGraphNN.py
223 lines (142 loc) · 7.05 KB
/
caloGraphNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import tensorflow as tf
### helpers here
def gauss(x):
return tf.exp(-1* x*x)
def gauss_of_lin(x):
return tf.exp(-1*(tf.abs(x)))
def euclidean_squared(A, B):
"""
Returns euclidean distance between two batches of shape [B,N,F] and [B,M,F] where B is batch size, N is number of
examples in the batch of first set, M is number of examples in the batch of second set, F is number of spatial
features.
Returns:
A matrix of size [B, N, M] where each element [i,j] denotes euclidean distance between ith entry in first set and
jth in second set.
"""
shape_A = A.get_shape().as_list()
shape_B = B.get_shape().as_list()
assert (A.dtype == tf.float32 or A.dtype == tf.float64) and (B.dtype == tf.float32 or B.dtype == tf.float64)
assert len(shape_A) == 3 and len(shape_B) == 3
assert shape_A[0] == shape_B[0]# and shape_A[1] == shape_B[1]
# Finds euclidean distance using property (a-b)^2 = a^2 + b^2 - 2ab
sub_factor = -2 * tf.matmul(A, tf.transpose(B, perm=[0, 2, 1])) # -2ab term
dotA = tf.expand_dims(tf.reduce_sum(A * A, axis=2), axis=2) # a^2 term
dotB = tf.expand_dims(tf.reduce_sum(B * B, axis=2), axis=1) # b^2 term
return tf.abs(sub_factor + dotA + dotB)
def nearest_neighbor_matrix(spatial_features, k=10):
"""
Nearest neighbors matrix given spatial features.
:param spatial_features: Spatial features of shape [B, N, S] where B = batch size, N = max examples in batch,
S = spatial features
:param k: Max neighbors
:return:
"""
shape = spatial_features.get_shape().as_list()
assert spatial_features.dtype == tf.float32 or spatial_features.dtype == tf.float64
assert len(shape) == 3
D = euclidean_squared(spatial_features, spatial_features)
D, N = tf.nn.top_k(-D, k)
return N, -D
def indexing_tensor(spatial_features, k=10, n_batch=-1):
shape_spatial_features = spatial_features.get_shape().as_list()
n_batch = shape_spatial_features[0]
n_max_entries = shape_spatial_features[1]
# All of these tensors should be 3-dimensional
assert len(shape_spatial_features) == 3
# Neighbor matrix should be int as it should be used for indexing
assert spatial_features.dtype == tf.float64 or spatial_features.dtype == tf.float32
neighbor_matrix, distance_matrix = nearest_neighbor_matrix(spatial_features, k)
batch_range = tf.expand_dims(tf.expand_dims(tf.expand_dims(tf.range(0, n_batch), axis=1),axis=1), axis=1)
batch_range = tf.tile(batch_range, [1,n_max_entries,k,1])
expanded_neighbor_matrix = tf.expand_dims(neighbor_matrix, axis=3)
indexing_tensor = tf.concat([batch_range, expanded_neighbor_matrix], axis=3)
return tf.cast(indexing_tensor, tf.int64), distance_matrix
#not really needed, maybe some performance advantage
def high_dim_dense(inputs,nodes,**kwargs):
if len(inputs.shape) == 3:
return tf.layers.conv1d(inputs, nodes, kernel_size=(1), strides=(1), padding='valid',
**kwargs)
if len(inputs.shape) == 4:
return tf.layers.conv2d(inputs, nodes, kernel_size=(1,1), strides=(1,1), padding='valid',
**kwargs)
if len(inputs.shape) == 5:
return tf.layers.conv3d(inputs, nodes, kernel_size=(1,1,1), strides=(1,1,1), padding='valid',
**kwargs)
def apply_edges(vertices, edges, reduce_sum=True, flatten=True,expand_first_vertex_dim=True, aggregation_function=tf.reduce_max):
'''
edges are naturally BxVxV'xF
vertices are BxVxF' or BxV'xF'
This function returns BxVxF'' if flattened and summed
'''
edges = tf.expand_dims(edges,axis=3)
if expand_first_vertex_dim:
vertices = tf.expand_dims(vertices,axis=1)
vertices = tf.expand_dims(vertices,axis=4)
out = edges*vertices # [BxVxV'x1xF] x [Bx1xV'xF'x1] = [BxVxV'xFxF']
if reduce_sum:
out = aggregation_function(out,axis=2)
if flatten:
out = tf.reshape(out,shape=[out.shape[0],out.shape[1],-1])
return out
###
###
###
###
###
###
### actual layers
###
###
###
###
###
###
def layer_GarNet(vertices_in,
n_aggregators,
n_filters,
n_propagate,
plus_mean=True
):
vertices_in_orig = vertices_in
vertices_in = tf.layers.dense(vertices_in,n_propagate,activation=None)
agg_nodes = tf.layers.dense(vertices_in_orig,n_aggregators,activation=None) #BxVxNA, vertices_in: BxVxF
agg_nodes = gauss(agg_nodes)
vertices_in = tf.concat([vertices_in,agg_nodes], axis=-1)
edges = tf.expand_dims(agg_nodes,axis=3) # BxVxNAx1
edges = tf.transpose(edges, perm=[0,2, 1,3]) # [BxVxV'xF]
vertices_in_collapsed = apply_edges(vertices_in, edges, reduce_sum=True, flatten=True)#,aggregation_function=tf.reduce_mean)# [BxNAxF]
vertices_in_mean_collapsed = apply_edges(vertices_in, edges, reduce_sum=True, flatten=True ,aggregation_function=tf.reduce_mean)# [BxNAxF]
vertices_in_collapsed= tf.concat([vertices_in_collapsed,vertices_in_mean_collapsed],axis=-1 )
edges = tf.transpose(edges, perm=[0,2, 1,3]) # [BxVxV'xF]
expanded_collapsed = apply_edges(vertices_in_collapsed, edges, reduce_sum=False, flatten=True)# [BxVxF]
expanded_collapsed = tf.concat([vertices_in_orig,expanded_collapsed,agg_nodes], axis=-1)
merged_out = high_dim_dense(expanded_collapsed,n_filters,activation=tf.nn.tanh)
return merged_out
def layer_GravNet(vertices_in,
n_neighbours,
n_dimensions,
n_filters,
n_propagate):
vertices_prop = high_dim_dense(vertices_in,n_propagate,activation=None)
neighb_dimensions = high_dim_dense(vertices_in,n_dimensions,activation=None) #BxVxND,
def collapse_to_vertex(indexing,distance,vertices):
neighbours = tf.gather_nd(vertices, indexing) #BxVxNxF
distance = tf.expand_dims(distance,axis=3)
distance = distance*10. # input is tanh activated or batch normed, allow for some more spread
edges = gauss_of_lin(distance)[:,:,1:,:]
neighbours = neighbours[:,:,1:,:]
scaled_feat = edges*neighbours
collapsed = tf.reduce_max(scaled_feat, axis=2)
collapsed_mean = tf.reduce_mean(scaled_feat,axis=2)
collapsed = tf.concat([collapsed,collapsed_mean],axis=-1)
return collapsed
indexing, distance = indexing_tensor(neighb_dimensions, n_neighbours)
collapsed = collapse_to_vertex(indexing,distance,vertices_prop)
updated_vertices = tf.concat([vertices_in,collapsed],axis=-1)
return high_dim_dense(updated_vertices,n_filters,activation=tf.nn.tanh)
def layer_global_exchange(vertices_in):
trans_vertices_in = vertices_in
global_summed = tf.reduce_mean(trans_vertices_in, axis=1, keepdims=True)
global_summed = tf.tile(global_summed, [1, vertices_in.shape[1], 1])
vertices_out = tf.concat([vertices_in, global_summed], axis=-1)
return vertices_out