-
Notifications
You must be signed in to change notification settings - Fork 225
/
Copy pathtrain_trpo_gym.py
202 lines (175 loc) · 7.31 KB
/
train_trpo_gym.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
"""An example of training TRPO against OpenAI Gym Envs.
This script is an example of training a TRPO agent against OpenAI Gym envs.
Both discrete and continuous action spaces are supported.
Chainer v3.1.0 or newer is required.
To solve CartPole-v0, run:
python train_trpo_gym.py --env CartPole-v0 --steps 100000
To solve InvertedPendulum-v1, run:
python train_trpo_gym.py --env InvertedPendulum-v1 --steps 100000
"""
import argparse
import logging
import os
import chainer
from chainer import functions as F
import gym
import gym.spaces
import numpy as np
import chainerrl
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--gpu', type=int, default=0,
help='GPU device ID. Set to -1 to use CPUs only.')
parser.add_argument('--env', type=str, default='Hopper-v2',
help='Gym Env ID')
parser.add_argument('--seed', type=int, default=0,
help='Random seed [0, 2 ** 32)')
parser.add_argument('--outdir', type=str, default='results',
help='Directory path to save output files.'
' If it does not exist, it will be created.')
parser.add_argument('--steps', type=int, default=10 ** 6,
help='Total time steps for training.')
parser.add_argument('--eval-interval', type=int, default=10000,
help='Interval between evaluation phases in steps.')
parser.add_argument('--eval-n-runs', type=int, default=10,
help='Number of episodes ran in an evaluation phase')
parser.add_argument('--render', action='store_true', default=False,
help='Render the env')
parser.add_argument('--demo', action='store_true', default=False,
help='Run demo episodes, not training')
parser.add_argument('--load', type=str, default='',
help='Directory path to load a saved agent data from'
' if it is a non-empty string.')
parser.add_argument('--trpo-update-interval', type=int, default=5000,
help='Interval steps of TRPO iterations.')
parser.add_argument('--logger-level', type=int, default=logging.INFO,
help='Level of the root logger.')
parser.add_argument('--monitor', action='store_true',
help='Monitor the env by gym.wrappers.Monitor.'
' Videos and additional log will be saved.')
args = parser.parse_args()
logging.basicConfig(level=args.logger_level)
# Set random seed
chainerrl.misc.set_random_seed(args.seed, gpus=(args.gpu,))
args.outdir = chainerrl.experiments.prepare_output_dir(args, args.outdir)
def make_env(test):
env = gym.make(args.env)
# Use different random seeds for train and test envs
env_seed = 2 ** 32 - args.seed if test else args.seed
env.seed(env_seed)
# Cast observations to float32 because our model uses float32
env = chainerrl.wrappers.CastObservationToFloat32(env)
if args.monitor:
env = chainerrl.wrappers.Monitor(env, args.outdir)
if args.render:
env = chainerrl.wrappers.Render(env)
return env
env = make_env(test=False)
timestep_limit = env.spec.max_episode_steps
obs_space = env.observation_space
action_space = env.action_space
print('Observation space:', obs_space)
print('Action space:', action_space)
if not isinstance(obs_space, gym.spaces.Box):
print("""\
This example only supports gym.spaces.Box observation spaces. To apply it to
other observation spaces, use a custom phi function that convert an observation
to numpy.ndarray of numpy.float32.""") # NOQA
return
# Normalize observations based on their empirical mean and variance
obs_normalizer = chainerrl.links.EmpiricalNormalization(
obs_space.low.size)
if isinstance(action_space, gym.spaces.Box):
# Use a Gaussian policy for continuous action spaces
policy = \
chainerrl.policies.FCGaussianPolicyWithStateIndependentCovariance(
obs_space.low.size,
action_space.low.size,
n_hidden_channels=64,
n_hidden_layers=2,
mean_wscale=0.01,
nonlinearity=F.tanh,
var_type='diagonal',
var_func=lambda x: F.exp(2 * x), # Parameterize log std
var_param_init=0, # log std = 0 => std = 1
)
elif isinstance(action_space, gym.spaces.Discrete):
# Use a Softmax policy for discrete action spaces
policy = chainerrl.policies.FCSoftmaxPolicy(
obs_space.low.size,
action_space.n,
n_hidden_channels=64,
n_hidden_layers=2,
last_wscale=0.01,
nonlinearity=F.tanh,
)
else:
print("""\
TRPO only supports gym.spaces.Box or gym.spaces.Discrete action spaces.""") # NOQA
return
# Use a value function to reduce variance
vf = chainerrl.v_functions.FCVFunction(
obs_space.low.size,
n_hidden_channels=64,
n_hidden_layers=2,
last_wscale=0.01,
nonlinearity=F.tanh,
)
if args.gpu >= 0:
chainer.cuda.get_device_from_id(args.gpu).use()
policy.to_gpu(args.gpu)
vf.to_gpu(args.gpu)
obs_normalizer.to_gpu(args.gpu)
# TRPO's policy is optimized via CG and line search, so it doesn't require
# a chainer.Optimizer. Only the value function needs it.
vf_opt = chainer.optimizers.Adam()
vf_opt.setup(vf)
# Draw the computational graph and save it in the output directory.
fake_obs = chainer.Variable(
policy.xp.zeros(obs_space.low.shape, dtype=np.float32)[None],
name='observation')
chainerrl.misc.draw_computational_graph(
[policy(fake_obs)], os.path.join(args.outdir, 'policy'))
chainerrl.misc.draw_computational_graph(
[vf(fake_obs)], os.path.join(args.outdir, 'vf'))
# Hyperparameters in http://arxiv.org/abs/1709.06560
agent = chainerrl.agents.TRPO(
policy=policy,
vf=vf,
vf_optimizer=vf_opt,
obs_normalizer=obs_normalizer,
update_interval=args.trpo_update_interval,
conjugate_gradient_max_iter=20,
conjugate_gradient_damping=1e-1,
gamma=0.995,
lambd=0.97,
vf_epochs=5,
entropy_coef=0,
)
if args.load:
agent.load(args.load)
if args.demo:
env = make_env(test=True)
eval_stats = chainerrl.experiments.eval_performance(
env=env,
agent=agent,
n_steps=None,
n_episodes=args.eval_n_runs,
max_episode_len=timestep_limit)
print('n_runs: {} mean: {} median: {} stdev {}'.format(
args.eval_n_runs, eval_stats['mean'], eval_stats['median'],
eval_stats['stdev']))
else:
chainerrl.experiments.train_agent_with_evaluation(
agent=agent,
env=env,
eval_env=make_env(test=True),
outdir=args.outdir,
steps=args.steps,
eval_n_steps=None,
eval_n_episodes=args.eval_n_runs,
eval_interval=args.eval_interval,
train_max_episode_len=timestep_limit,
)
if __name__ == '__main__':
main()