This is a Ruby implementation of the Schnorr signature scheme over the elliptic curve. This implementation relies on the ecdsa gem for operate elliptic curves.
The code is based upon the BIP340.
Add this line to your application's Gemfile:
gem 'bip-schnorr', require: 'schnorr'
And then execute:
$ bundle
Or install it yourself as:
$ gem install bip-schnorr
require 'schnorr'
private_key = ['B7E151628AED2A6ABF7158809CF4F3C762E7160F38B4DA56A784D9045190CFEF'].pack("H*")
message = ['5E2D58D8B3BCDF1ABADEC7829054F90DDA9805AAB56C77333024B9D0A508B75C'].pack('H*')
# create signature
signature = Schnorr.sign(message, private_key)
# if use auxiliary random data, specify it to the 3rd arguments.
aux_rand = SecureRandom.bytes(32) # aux_rand must be a 32-byte binary.
signature = Schnorr.sign(message, private_key, aux_rand)
# signature r value
signature.r
# signature s value
signature.s
# convert signature to binary
signature.encode
require 'schnorr'
# public key does not start with 02 or 03.
public_key = ['DFF1D77F2A671C5F36183726DB2341BE58FEAE1DA2DECED843240F7B502BA659'].pack('H*')
signature = ['6896BD60EEAE296DB48A229FF71DFE071BDE413E6D43F917DC8DCF8C78DE33418906D11AC976ABCCB20B091292BFF4EA897EFCB639EA871CFA95F6DE339E4B0A'].pack('H*')
message = ['243F6A8885A308D313198A2E03707344A4093822299F31D0082EFA98EC4E6C89'].pack('H*')
# verify signature.(result is true or false)
result = Schnorr.valid_sig?(message, public_key, signature)
# signature convert to Signature object
sig = Schnorr::Signature.decode(signature)
This library support MuSig2* as defined BIP-327.
require 'schnorr'
sk1 = 1 + SecureRandom.random_number(Schnorr::GROUP.order - 1)
pk1 = (Schnorr::GROUP.generator.to_jacobian * sk1).to_affine.encode
sk2 = 1 + SecureRandom.random_number(Schnorr::GROUP.order - 1)
pk2 = (Schnorr::GROUP.generator.to_jacobian * sk2).to_affine.encode
pubkeys = [pk1, pk2]
# Key aggregation.
agg_ctx = Schnorr::MuSig2.aggregate(pubkeys)
# if you have tweak value.
agg_ctx = Schnorr::MuSig2.aggregate_with_tweaks(pubkeys, tweaks, modes)
## Aggregated pubkey is
### Return point:
agg_ctx.q
### Return x-only pubkey string
agg_ctx.x_only_pubkey
msg = SecureRandom.bytes(32)
# Generate secret nonce and public nonce.
sec_nonce1, pub_nonce1 = Schnorr::MuSig2.gen_nonce(
pk: pk1,
sk: sk1, # optional
agg_pubkey: agg_ctx.x_only_pubkey, # optional
msg: msg, # optional
extra_in: SecureRandom.bytes(4), # optional
rand: SecureRandom.bytes(32) # optional
)
## for stateless signer.
agg_other_nonce = described_class.aggregate_nonce([pub_nonce1])
pub_nonce2, sig2 = described_class.deterministic_sign(
sk2, agg_other_nonce, pubkeys, msg,
tweaks: tweaks, # optional
modes: modes, # optional
rand: SecureRandom.bytes(32) # optional
)
# Nonce aggregation
agg_nonce = Schnorr::MuSig2.aggregate_nonce([pub_nonce1, pub_nonce2])
# Generate partial signature.
session_ctx = Schnorr::MuSig2::SessionContext.new(
agg_nonce, pubkeys, msg,
tweaks, # optional
modes # optional
)
sig1 = session_ctx.sign(sec_nonce1, sk1)
# Verify partial signature.
signer_index = 0
session_ctx.valid_partial_sig?(sig1, pub_nonce1, signer_index)
# Signature aggregation.
sig = session_ctx.aggregate_partial_sigs([sig1, sig2])
# Verify signature.
Schnorr.valid_sig?(msg, agg_ctx.x_only_pubkey, sig.encode)
This library changes the following functions of ecdsa
gem in lib/schnorr/ec_point_ext.rb
.
ECDSA::Point
class has following two instance methods.#has_even_y?
check the y-coordinate of this point is an even.#encode(only_x = false)
encode this point into a binary string.
ECDSA::Format::PointOctetString#decode
:- supports decoding only from x coordinate.
- decode 33 bytes of zeros as infinity points.