-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutilities.py
220 lines (156 loc) · 6.31 KB
/
utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import pandas as pd
import numpy as np
import seaborn as sns
import cv2
import tensorflow as tf
import os
from skimage import io
from PIL import Image
from tensorflow.keras import backend as K
#creating a custom datagenerator:
class DataGenerator(tf.keras.utils.Sequence):
def __init__(self, ids , mask, image_dir = './', batch_size = 16, img_h = 256, img_w = 256, shuffle = True):
self.ids = ids
self.mask = mask
self.image_dir = image_dir
self.batch_size = batch_size
self.img_h = img_h
self.img_w = img_w
self.shuffle = shuffle
self.on_epoch_end()
def __len__(self):
'Get the number of batches per epoch'
return int(np.floor(len(self.ids)) / self.batch_size)
def __getitem__(self, index):
'Generate a batch of data'
#generate index of batch_size length
indexes = self.indexes[index* self.batch_size : (index+1) * self.batch_size]
#get the ImageId corresponding to the indexes created above based on batch size
list_ids = [self.ids[i] for i in indexes]
#get the MaskId corresponding to the indexes created above based on batch size
list_mask = [self.mask[i] for i in indexes]
#generate data for the X(features) and y(label)
X, y = self.__data_generation(list_ids, list_mask)
#returning the data
return X, y
def on_epoch_end(self):
'Used for updating the indices after each epoch, once at the beginning as well as at the end of each epoch'
#getting the array of indices based on the input dataframe
self.indexes = np.arange(len(self.ids))
#if shuffle is true, shuffle the indices
if self.shuffle:
np.random.shuffle(self.indexes)
def __data_generation(self, list_ids, list_mask):
'generate the data corresponding the indexes in a given batch of images'
# create empty arrays of shape (batch_size,height,width,depth)
#Depth is 3 for input and depth is taken as 1 for output becasue mask consist only of 1 channel.
X = np.empty((self.batch_size, self.img_h, self.img_w, 3))
y = np.empty((self.batch_size, self.img_h, self.img_w, 1))
#iterate through the dataframe rows, whose size is equal to the batch_size
for i in range(len(list_ids)):
#path of the image
img_path = './' + str(list_ids[i])
#mask path
mask_path = './' + str(list_mask[i])
#reading the original image and the corresponding mask image
img = io.imread(img_path)
mask = io.imread(mask_path)
#resizing and coverting them to array of type float64
img = cv2.resize(img,(self.img_h,self.img_w))
img = np.array(img, dtype = np.float64)
mask = cv2.resize(mask,(self.img_h,self.img_w))
mask = np.array(mask, dtype = np.float64)
#standardising
img -= img.mean()
img /= img.std()
mask -= mask.mean()
mask /= mask.std()
#Adding image to the empty array
X[i,] = img
#expanding the dimnesion of the image from (256,256) to (256,256,1)
y[i,] = np.expand_dims(mask, axis = 2)
#normalizing y
y = (y > 0).astype(int)
return X, y
def prediction(test, model, model_seg):
'''
Predcition function which takes dataframe containing ImageID as Input and perform 2 type of prediction on the image
Initially, image is passed through the classification network which predicts whether the image has defect or not, if the model
is 99% sure that the image has no defect, then the image is labeled as no-defect, if the model is not sure, it passes the image to the
segmentation network, it again checks if the image has defect or not, if it has defect, then the type and location of defect is found
'''
#directory
directory = "./"
#Creating empty list to store the results
mask = []
image_id = []
has_mask = []
#iterating through each image in the test data
for i in test.image_path:
path = directory + str(i)
#reading the image
img = io.imread(path)
#Normalizing the image
img = img * 1./255.
#Reshaping the image
img = cv2.resize(img,(256,256))
#Converting the image into array
img = np.array(img, dtype = np.float64)
#reshaping the image from 256,256,3 to 1,256,256,3
img = np.reshape(img, (1,256,256,3))
#making prediction on the image
is_defect = model.predict(img)
#if tumour is not present we append the details of the image to the list
if np.argmax(is_defect) == 0:
image_id.append(i)
has_mask.append(0)
mask.append('No mask')
continue
#Read the image
img = io.imread(path)
#Creating a empty array of shape 1,256,256,1
X = np.empty((1, 256, 256, 3))
#resizing the image and coverting them to array of type float64
img = cv2.resize(img,(256,256))
img = np.array(img, dtype = np.float64)
#standardising the image
img -= img.mean()
img /= img.std()
#converting the shape of image from 256,256,3 to 1,256,256,3
X[0,] = img
#make prediction
predict = model_seg.predict(X)
#if the sum of predicted values is equal to 0 then there is no tumour
if predict.round().astype(int).sum() == 0:
image_id.append(i)
has_mask.append(0)
mask.append('No mask')
else:
#if the sum of pixel values are more than 0, then there is tumour
image_id.append(i)
has_mask.append(1)
mask.append(predict)
return image_id, mask, has_mask
'''
We need a custom loss function to train this ResUNet.So, we have used the loss function as it is from https://github.com/nabsabraham/focal-tversky-unet/blob/master/losses.py
@article{focal-unet,
title={A novel Focal Tversky loss function with improved Attention U-Net for lesion segmentation},
author={Abraham, Nabila and Khan, Naimul Mefraz},
journal={arXiv preprint arXiv:1810.07842},
year={2018}
}
'''
def tversky(y_true, y_pred, smooth = 1e-6):
y_true_pos = K.flatten(y_true)
y_pred_pos = K.flatten(y_pred)
true_pos = K.sum(y_true_pos * y_pred_pos)
false_neg = K.sum(y_true_pos * (1-y_pred_pos))
false_pos = K.sum((1-y_true_pos)*y_pred_pos)
alpha = 0.7
return (true_pos + smooth)/(true_pos + alpha*false_neg + (1-alpha)*false_pos + smooth)
def tversky_loss(y_true, y_pred):
return 1 - tversky(y_true,y_pred)
def focal_tversky(y_true,y_pred):
pt_1 = tversky(y_true, y_pred)
gamma = 0.75
return K.pow((1-pt_1), gamma)