Skip to content

Latest commit

 

History

History
118 lines (82 loc) · 2.86 KB

README.md

File metadata and controls

118 lines (82 loc) · 2.86 KB

GCN-GLAC Net: GLocal Attention Cascading Network with Graph Convolution

This is modified from this repository.

The objective is to augment the GLAC Network for visual storytelling using Graph Convolution Networks.

(Rest of documentation to be updated)

This repository is the implementation of GLAC Net: GLocal Attention Cascading Network for the Visual Storytelling Challenge 2018 as a team SnuBiVtt. Our model got the highest score in the human evaluation of the challenge.

Architecture of GLocal Attention Cascading Network


Dependencies

Python 3.6 or 2.7
Pytorch >= 1.0.0


Prerequisites

1. Clone the repository
git clone https://github.com/tkim-snu/GLACNet.git
cd GLACNet
2. Download requirements
pip3 install -r requirements.txt
3. Download sentence tokenizer
python3
>>> import nltk
>>> nltk.download('punkt')
>>> exit()

Preprocessing

1. Download the dataset

VIST homepage

2. Resize images and build vocabulary

All the images should be resized to 256x256.

python3 resize.py --image_dir [train_image_dir] --output_dir [output_train_dir]
python3 resize.py --image_dir [val_image_dir] --output_dir [output_val_dir]
python3 resize.py --image_dir [test_image_dir] --output_dir [output_test_dir]
python3 build_vocab.py

Training & Validation

python3 train.py

Evaluation

1. Download the evaluation tool (METEOR score) for the VIST Challenge
git clone https://github.com/windx0303/VIST-Challenge-NAACL-2018 ../VIST-Challenge-NAACL-2018
2. Install Java
sudo apt install default-jdk
3. Run eval.py script
python3 eval.py --model_num [my_model_num]

The result.json file will be found in the root directory.


Pretrained model

We provide the pretrained model(for Python3). Please download the link and move to <GLACNet root>/models/.


Citation

@article{Kim2018GLAC,
title={GLAC Net: GLocal Attention Cascading Networks for Multi-image Cued Story Generation},
author={Taehyeong Kim and Min-Oh Heo and Seonil Son and Kyoung-Wha Park and Byoung-Tak Zhang},
journal={CoRR},
year={2018},
volume={abs/1805.10973}
}

License

MIT License
This repository refer to pytorch tutorial by yunjey.