forked from TheAlgorithms/Java
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKruskal.java
103 lines (92 loc) · 3.73 KB
/
Kruskal.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
// Problem -> Connect all the edges with the minimum cost.
// Possible Solution -> Kruskal Algorithm (KA), KA finds the minimum-spanning-tree, which means, the
// group of edges with the minimum sum of their weights that connect the whole graph.
// The graph needs to be connected, because if there are nodes impossible to reach, there are no
// edges that could connect every node in the graph.
// KA is a Greedy Algorithm, because edges are analysed based on their weights, that is why a
// Priority Queue is used, to take first those less weighted.
// This implementations below has some changes compared to conventional ones, but they are explained
// all along the code.
import java.util.Comparator;
import java.util.HashSet;
import java.util.PriorityQueue;
public class Kruskal {
// Complexity: O(E log V) time, where E is the number of edges in the graph and V is the number of
// vertices
private static class Edge {
private int from;
private int to;
private int weight;
public Edge(int from, int to, int weight) {
this.from = from;
this.to = to;
this.weight = weight;
}
}
private static void addEdge(HashSet<Edge>[] graph, int from, int to, int weight) {
graph[from].add(new Edge(from, to, weight));
}
public static void main(String[] args) {
HashSet<Edge>[] graph = new HashSet[7];
for (int i = 0; i < graph.length; i++) {
graph[i] = new HashSet<>();
}
addEdge(graph, 0, 1, 2);
addEdge(graph, 0, 2, 3);
addEdge(graph, 0, 3, 3);
addEdge(graph, 1, 2, 4);
addEdge(graph, 2, 3, 5);
addEdge(graph, 1, 4, 3);
addEdge(graph, 2, 4, 1);
addEdge(graph, 3, 5, 7);
addEdge(graph, 4, 5, 8);
addEdge(graph, 5, 6, 9);
System.out.println("Initial Graph: ");
for (int i = 0; i < graph.length; i++) {
for (Edge edge : graph[i]) {
System.out.println(i + " <-- weight " + edge.weight + " --> " + edge.to);
}
}
Kruskal k = new Kruskal();
HashSet<Edge>[] solGraph = k.kruskal(graph);
System.out.println("\nMinimal Graph: ");
for (int i = 0; i < solGraph.length; i++) {
for (Edge edge : solGraph[i]) {
System.out.println(i + " <-- weight " + edge.weight + " --> " + edge.to);
}
}
}
public HashSet<Edge>[] kruskal(HashSet<Edge>[] graph) {
int nodes = graph.length;
int[] captain = new int[nodes];
// captain of i, stores the set with all the connected nodes to i
HashSet<Integer>[] connectedGroups = new HashSet[nodes];
HashSet<Edge>[] minGraph = new HashSet[nodes];
PriorityQueue<Edge> edges = new PriorityQueue<>((Comparator.comparingInt(edge -> edge.weight)));
for (int i = 0; i < nodes; i++) {
minGraph[i] = new HashSet<>();
connectedGroups[i] = new HashSet<>();
connectedGroups[i].add(i);
captain[i] = i;
edges.addAll(graph[i]);
}
int connectedElements = 0;
// as soon as two sets merge all the elements, the algorithm must stop
while (connectedElements != nodes && !edges.isEmpty()) {
Edge edge = edges.poll();
// This if avoids cycles
if (!connectedGroups[captain[edge.from]].contains(edge.to)
&& !connectedGroups[captain[edge.to]].contains(edge.from)) {
// merge sets of the captains of each point connected by the edge
connectedGroups[captain[edge.from]].addAll(connectedGroups[captain[edge.to]]);
// update captains of the elements merged
connectedGroups[captain[edge.from]].forEach(i -> captain[i] = captain[edge.from]);
// add Edge to minimal graph
addEdge(minGraph, edge.from, edge.to, edge.weight);
// count how many elements have been merged
connectedElements = connectedGroups[captain[edge.from]].size();
}
}
return minGraph;
}
}