-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathapp.py
583 lines (532 loc) · 32.1 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
from nltk.corpus import wordnet as wn
from collections import Counter
import plotly.graph_objects as go
import dash
import dash_core_components as dcc
import dash_html_components as html
from dash.exceptions import PreventUpdate
from dash.dependencies import Input, Output, State
import os
import random
import json
import pandas as pd
import string
import requests
import re
from cltk.corpus.utils.formatter import cltk_normalize
from cltk.lemmatize.greek.backoff import BackoffGreekLemmatizer
from greek_accentuation.syllabify import *
from greek_accentuation.accentuation import *
aeinput = "άἀἁἂἃἄἅἆἇὰάᾀᾁᾂᾃᾄᾅᾆᾇᾰᾱᾲᾳᾴᾶᾷᾈᾉᾊᾋᾌᾍᾎᾏᾼἈἉΆἊἋἌἍἎἏᾸᾹᾺΆέἐἑἒἓἔἕὲέἘἙἚἛἜἝΈῈΈ"
aeoutput = "αααααααααααᾳᾳᾳᾳᾳᾳᾳᾳααᾳᾳᾳαᾳᾼᾼᾼᾼᾼᾼᾼᾼᾼΑΑΑΑΑΑΑΑΑΑΑΑΑεεεεεεεεεΕΕΕΕΕΕΕΕΕ"
hoinput = "ᾘᾙᾚᾛᾜᾝᾞᾟῌΉῊΉἨἩἪἫἬἭἮἯήἠἡἢἣἤἥἦἧὴήῆᾐᾑᾒᾓᾔᾕᾖᾗῂῃῄῇὀὁὂὃὄὅόὸόΌὈὉὊὋὌὍῸΌ"
hooutput = "ῌῌῌῌῌῌῌῌῌΗΗΗΗΗΗΗΗΗΗΗηηηηηηηηηηηηῃῃῃῃῃῃῃῃῃῃῃῃοοοοοοοοοΟΟΟΟΟΟΟΟΟ"
iuinput = "ΊῘῙῚΊἸἹἺἻἼἽἾἿΪϊίἰἱἲἳἴἵἶἷΐὶίῐῑῒΐῖῗΫΎὙὛὝὟϓϔῨῩῪΎὐὑὒὓὔὕὖὗΰϋύὺύῠῡῢΰῦῧ"
iuoutput = "ΙΙΙΙΙΙΙΙΙΙΙΙΙΙιιιιιιιιιιιιιιιιιιιΥΥΥΥΥΥΥΥΥΥΥΥυυυυυυυυυυυυυυυυυυυ"
wrinput = "ώὠὡὢὣὤὥὦὧὼῶώᾠᾡᾢᾣᾤᾥᾦᾧῲῳῴῷΏὨὩὪὫὬὭὮὯῺΏᾨᾩᾪᾫᾬᾭᾮᾯῼῤῥῬ"
wroutput = "ωωωωωωωωωωωωῳῳῳῳῳῳῳῳῳῳῳῳΩΩΩΩΩΩΩΩΩΩΩῼῼῼῼῼῼῼῼῼρρΡ"
# Strings to feed into translator tables to remove diacritics.
aelphas = str.maketrans(aeinput, aeoutput, "⸀⸁⸂⸃·,.—")
# This table also removes text critical markers and punctuation.
hoes = str.maketrans(hoinput, hooutput, string.punctuation)
# Removes other punctuation in case I forgot any.
ius = str.maketrans(iuinput, iuoutput, '0123456789')
# Also removes numbers (from verses).
wros = str.maketrans(wrinput, wroutput, string.ascii_letters)
# Also removes books names.
def deaccent(dastring):
"""Returns an unaccented version of a string."""
return dastring.translate(aelphas).translate(hoes).translate(ius).translate(wros).lower()
# If a Greek word is given while in Greek mode and the orignal word is not in the list of Greek nouns, this will
# attempt to normalize the accentuation, try a series of accentuation patterns, and finally try to lemmatize the word.
# At each step, it will check if the resulting word is in the list of Greek nouns. Accents are easy to mess up in
# Ancient Greek, so this checks that. It should also allow for the entering of unaccented words, which is somewhat
# popular.
def greek_word_check(word):
"""If the initial word is not found in the list of available Greek nouns, then this will attempt to find a suitable
word by accent normalization, altering accentuation patterns, and lemmatization."""
if word.isascii():
try:
url = f'https://greekwordnet.chs.harvard.edu/translate/en/{word}/n/'
trans_json = requests.get(url).json()
word = random.choice(trans_json['results'])['lemma']
if word in greek_nouns:
return word
except IndexError:
return word
if word in greek_nouns:
return word
norm_word = cltk_normalize(word)
if norm_word in greek_nouns:
return word
unaccented_word = deaccent(word)
try:
s = syllabify(unaccented_word)
for accentuation in possible_accentuations(s):
next_pattern = rebreath(add_accent(s, accentuation))
if next_pattern in greek_nouns:
return next_pattern
breathed_pattern = rebreath('h' + add_accent(s, accentuation))
if breathed_pattern in greek_nouns:
return breathed_pattern
except TypeError:
pass
lemmatizer = BackoffGreekLemmatizer()
lemmed_word = lemmatizer.lemmatize([word])[0][1]
if lemmed_word in greek_nouns:
return lemmed_word
try:
s = syllabify(word)
for accentuation in possible_accentuations(s):
try_word = lemmatizer.lemmatize([rebreath(add_accent(s, accentuation))])[0][1]
if try_word in greek_nouns:
return try_word
try_word = lemmatizer.lemmatize([rebreath('h' + add_accent(s, accentuation))])[0][1]
if try_word in greek_nouns:
return try_word
except TypeError:
pass
else:
return word
def eng_synset_counting(ss_list, ss_counter, pairs):
"""A recursive function for climbing the synset hierarchy and recording the child-parent pairs."""
next_list = []
if len(ss_list) == 0:
return ss_counter, pairs
else:
for ss in ss_list:
for higherss in ss.hypernyms():
if ss in pairs:
if higherss in pairs[ss]:
pass
else:
pairs[ss].append(higherss)
else:
pairs[ss] = [higherss]
ss_counter[higherss] += 1
if higherss != wn.synset('entity.n.01'):
next_list.append(higherss)
return eng_synset_counting(next_list, ss_counter, pairs)
def make_dash(word, lingua):
"""This updates the app's figure and panels when a new entry is given."""
base_synsets = []
basepaths = []
multiparents = []
synset_counter = Counter()
child_parent_pairs = {}
glosses = []
if word is None:
raise PreventUpdate
if word == "":
raise PreventUpdate
# Check for language
if lingua == 'english':
right_box_2 = [html.H3('Definitions', style={'text-align': 'center'}), html.Br()]
# WordNet can handle some multiword phrases, but they need underscores instead of spaces
word = word.replace(' ', '_')
show_word = word.replace('_', ' ')
# Create a list of all base synsets
for synset in wn.synsets(word, pos=wn.NOUN):
for path in synset.hypernym_paths():
basepaths.append(path)
base_synsets.append(synset)
# Order the base synsets list, grab their definitions, and format them for display in the app
for synset in sorted(base_synsets):
ss_split = str(synset)[8:].split('.n.')
right_box_2.append(html.B(ss_split[0].replace('_', ' ')))
right_box_2.append(html.Span(ss_split[1][:2].lstrip('0'), className='ss'))
right_box_2.append(' ' + synset.definition())
right_box_2.append(html.Br())
synset_counter, child_parent_pairs = eng_synset_counting(base_synsets, synset_counter, child_parent_pairs)
for child in child_parent_pairs:
if len(child_parent_pairs[child]) > 1:
multiparents.append(child)
adjusted_paths = []
max_len = 0
for path in basepaths:
# This number will be displayed in the app.
if len(path) > max_len:
max_len = len(path)
# The tricky part here is converting the output of WordNet which sometimes assigns multiple hypernyms to a
# single synset into the input for plotly which requires that each synset only have a single parent. So
# renaming had to be done to synsets with multiple parents.
multi = False
revised_path = []
multi_suffix = ''
for k, item in enumerate(path):
if multi:
if item in multiparents:
multi_suffix = multi_suffix + '-' + str(path[k-1])
revised_path.append(str(item) + '-' + multi_suffix)
else:
revised_path.append(str(item) + '-' + str(multi_suffix))
else:
if item in multiparents:
multi_suffix = str(path[k-1])
revised_path.append(str(item) + '-' + multi_suffix)
multi = True
else:
revised_path.append(str(item))
adjusted_paths.append(revised_path)
ids = ["Synset('entity.n.01')"]
labels = ['entity']
parents = ['']
for path in adjusted_paths:
for j, node in enumerate(path):
if node not in ids:
ids.append(node)
labels.append(node.split('.n')[0][8:].replace('_', ' '))
parents.append(path[j-1])
# This checks to see if WordNet recognizing the word as a noun. If not, it returns an error.
if len(wn.synsets(word, pos=wn.NOUN)) == 0:
graph_title = f'Error: WordNet does not recognize "{show_word.capitalize()}" as a noun.'
figure = {'data': [{'type': 'sunburst'}]}
else:
graph_title = f'Semantic Domains of "{show_word.capitalize()}"'
figure = {'data': [{'type': 'sunburst',
'ids': ids,
'labels': labels,
'parents': parents,
'hovertext': ids,
'hoverinfo': 'text'}],
'layout': {'font': {'family': 'Quicksand',
'size': 24},
'margin': {'l': 10,
'r': 10,
'b': 10,
't': 10},
'colorway': ['#457b9d', '#e63946']
}
}
right_box_1 = ['The noun "', html.B(f'{show_word}'), '" is a member of', html.H1(str(len(base_synsets))),
' end node synsets.']
right_box_3 = ['Unique paths from end nodes to root node:', html.H1(len(basepaths))]
right_box_4 = ['Synsets along the longest path from end node to root node (including the end node and root '
'node):', html.H1(max_len)]
box2c = 'sense-box'
box3c = 'right-box'
# If Greek is the language..
else:
# Find lemma id's from lemma, get synsets from lemma id's, get glosses from the synset dataframe
# As it is, this prefers to only show glosses for synsets which are assigned a semfield. If none have a semfield
# assigned, then it shows all glosses. This was done because some words have a huge number of glosses.
ids = []
labels = []
codes = []
parents = []
right_box_3 = [html.H3('Definitions', style={'text-align': 'center'}), html.Br()]
box2c = 'right-box'
box3c = 'sense-box'
word = greek_word_check(word)
# WordNet can handle some multiword phrases, but they need underscores instead of spaces
show_word = word.replace('_', ' ')
lillemma = lemma_df[lemma_df['lemma'] == word]
for lemma_id in lillemma['id'].to_list():
for synset_id in list(set(sense_df[sense_df['lemma'] == lemma_id]['synset'].to_list())):
small_ss_df = synset_df[(synset_df['id'] == synset_id) & (synset_df['semfield'].notna())]
for gloss in small_ss_df['gloss'].to_list():
glosses.append(gloss)
for semfield in small_ss_df['semfield'].to_list():
# If there are multiple semantic fields, this separates those up. In this case, base_synsets are
# id numbers,not words.
if isinstance(semfield, str):
for item in semfield.split(','):
base_synsets.append(int(item))
else:
if semfield:
base_synsets.append(semfield)
base_synsets = list(set(base_synsets))
# In case no glosses are assigned a semantic field:
if len(glosses) == 0:
for lemma_id in lemma_df[lemma_df['lemma'] == word]['id'].to_list():
for synset_id in list(set(sense_df[sense_df['lemma'] == lemma_id]['synset'].to_list())):
for gloss in synset_df[(synset_df['id'] == synset_id) &
(synset_df['semfield'].isnull())]['gloss'].to_list():
glosses.append(gloss)
right_box_3.append(f'No definitions available for {show_word}.')
box3c = 'right-box'
else:
for i, definition in enumerate(glosses):
right_box_3.append(str(i+1) + '. ' + re.split('[:;] "', definition)[0])
right_box_3.append(html.Br())
# Convert synsets to ids, labels, parents, and codes (which will be mouse hover data). The hypernym value is 0
# when there are no higher synsets.
for ssid in base_synsets:
next_id = ssid
while semfield_df[semfield_df['id'] == next_id].iloc[0]['hypers'] != 0:
lilsf_df = semfield_df[semfield_df['id'] == next_id]
if next_id not in ids:
ids.append(next_id)
labels.append(lilsf_df.iloc[0]['english'])
codes.append(lilsf_df.iloc[0]['code'])
parents.append(int(lilsf_df.iloc[0]['hypers']))
next_id = int(lilsf_df.iloc[0]['hypers'])
if next_id not in ids:
lilsf_df = semfield_df[semfield_df['id'] == next_id]
ids.append(next_id)
labels.append(lilsf_df.iloc[0]['english'])
codes.append(lilsf_df.iloc[0]['code'])
parents.append('')
# This checks to see if WordNet recognizing the word as a noun. If not, it displays an error instead of a graph.
if word not in greek_nouns:
graph_title = f'Error: Ancient Greek WordNet does not recognize "{show_word.capitalize()}" as a noun.'
figure = {'data': [{'type': 'sunburst'}]}
right_box_1 = [f'No pronunciation data for {show_word}.']
else:
graph_title = f'Semantic Domains of "{show_word.capitalize()}"'
figure = {'data': [{'type': 'sunburst',
'ids': ids,
'labels': labels,
'parents': parents,
'hovertext': codes,
'hoverinfo': 'text'}],
'layout': {'font': {'family': 'Quicksand',
'size': 24},
'margin': {'l': 10,
'r': 10,
'b': 10,
't': 10},
'colorway': ['#03045e', '#023e8a', '#0077b6', '#0096c7', '#00b4d8', '#48cae4',
'#90e0ef', '#ade8f4', '#caf0f8', '#e63946']
}
}
if pd.notna(lillemma.iloc[0]['pronunciation']):
right_box_1 = [f'{show_word} is pronounced', html.Br(), html.H1(lillemma.iloc[0]['pronunciation'],
className='pronunciation')]
else:
right_box_1 = [f'No pronuncation data for {show_word}.']
# Checks if word has been validated.
if word not in validated_list:
right_box_2 = ['The definitions of ', html.B(f'{show_word} '), html.Br(),
html.B('have not been validated.')]
else:
right_box_2 = ['The definitions of ', html.B(f'{show_word}'), html.Br(),
html.B('have been validated.')]
# Checks is word has semfield data.
if len(base_synsets) == 0:
right_box_4 = [f'There is no semantic field data on {show_word}.']
else:
right_box_4 = ['The noun "', html.B(f'{show_word}'), '" is a member of',
html.H1(str(len(base_synsets))),
' outer semfields.']
return graph_title, figure, right_box_1, right_box_2, box2c, right_box_3, box3c, right_box_4
# This will allow a layout of "impression" to be shown when the page is first loaded.
def initial_layout():
init_title, init_fig, init_ss_list, init_defs, b2c, init_paths, b3c, init_longest_path = \
make_dash('impression', 'english')
return html.Div(className='grid-container',
children=[html.Div(className='left-container',
children=[html.Div(className='input-container',
children=[html.H3(className='input-label',
children='Text Input'), html.Br(),
dcc.RadioItems(id='language-sel',
className='radio-buttons',
options=[
{'label': 'English',
'value': 'english'},
{'label': 'Ancient Greek',
'value': 'greek'}
],
value='english'),
html.Br(),
dcc.Input(id='input-state',
type='text',
placeholder='Type a noun',
debounce=True),
html.Button(children='Go', id='start'), html.Br(),
html.Button(id='random-button',
children='Give Me a Random Word')]
),
html.Div(className='info-container',
id='info-container',
children=[html.H3(className='info-head',
children='What is this?'),
dcc.Markdown(what_string_1), html.Br(),
dcc.Markdown(what_string_2), html.Br(),
dcc.Markdown(what_string_3), html.Br(),
html.H3(className='info-head',
children='Why Do This?'),
dcc.Markdown(why_string_1), html.Br(),
html.H3(className='info-head',
children='Who & How?'),
dcc.Markdown(how_string_1)
]
)
]
),
html.Div(className='center-container',
children=[html.H3(id='graph-title',
className='graph-title',
children=init_title,
),
html.Div(id='graph-box',
className='graph-box',
children=dcc.Graph(id='sem-dom-graph',
figure=init_fig,
config={'scrollZoom': True,
'responsive': True},
style={'height': '100%',
'width': '100%'}
)
)
]
),
html.Div(className='right-container',
children=[html.Div(id='right-box-1',
children=init_ss_list,
className='right-box'),
html.Div(id='right-box-2',
children=init_defs,
className=b2c),
html.Div(id='right-box-3',
children=init_paths,
className=b3c),
html.Div(id='right-box-4',
children=init_longest_path,
className='right-box'),
html.Div(className='mobile-info',
id='mobile-info',
children=[html.H3(className='info-head',
children='What is this?'),
dcc.Markdown(what_string_1), html.Br(),
dcc.Markdown(what_string_2), html.Br(),
dcc.Markdown(what_string_3), html.Br(),
html.H3(className='info-head',
children='Why Do This?'),
dcc.Markdown(why_string_1), html.Br(),
html.H3(className='info-head',
children='Who & How'),
dcc.Markdown(how_string_1)
]
)
]
)
]
)
with open(os.path.join('data', 'english_nouns.json')) as json_file:
english_nouns = json.load(json_file)
with open(os.path.join('data', 'validated_list.json'), encoding='utf-8') as val_file:
validated_list = json.load(val_file)
with open(os.path.join('data', 'pro_words.json'), encoding='utf-8') as pro_file:
pro_words = json.load(pro_file)
lemma_df = pd.read_csv(os.path.join('data', 'lemma.csv'))
greek_nouns = lemma_df['lemma'].to_numpy()
sense_df = pd.read_csv(os.path.join('data', 'literalsense.csv'), dtype={'id': int, 'lemma': 'int32', 'synset': 'int32'})
synset_df = pd.read_csv(os.path.join('data', 'synset.csv'), dtype={'id': 'int32'})
semfield_df = pd.read_csv(os.path.join('data', 'semfield.csv'), dtype={'id': 'int16', 'hypers': 'int16'})
# Construct a default sunburst graph. This prevents flickering when loading.
fig = go.Figure(go.Sunburst())
# Write out markdown text strings that will be used in the app
what_string_1 = '''This is an interactive semantic domains visualizer (click on the graph!). Given an English noun,
this will display the hierarchy of semantic domains that word falls under according to
[English WordNet](https://wordnet.princeton.edu/).'''
what_string_2 = '''Semantic domains are categories of meaning which are filled up by words which fit that meaning. This
page, by default, displays the semantic domains for the word "impression." On the outer edges, you can see the end node
domains that contain the various meanings of the word "impression."'''
what_string_3 = '''These domains are arranged in a hierarchy. An impression can be a depression which is a concave
shape which is a solid which is a shape and so on until one works their way up to the root node "entity." All nouns are
eventually entities.'''
why_string_1 = '''I have an interest in applying computational linguistic methods to the New Testament and Ancient
Greek. Sometimes when explaining what I'm doing, it's helpful to first show the same concept in English. Hence, I made
this app with an English option. What this does is actually fairly simple because it's just a stepping stone
along the path to a much more complex semantic preferences project. But I thought it was fun to
look at in its own right so I shared it here. It also provided an opportunity to solve a deceptively tricky problem
necessary for properly displaying the semantic domains of the semantic preferences project: WordNet will sometimes
assign the same synset to multiple hypernyms. The input of this sunburst diagram, however, required that each synset
have a unique ID (which is displayed upon hovering) with only a single parent. The problem is compounded as multiple
synsets along a path from an end node to a top node may have multiple hypernyms. The number of nodes that require
unique renaming grows exponentially with each multi-parent node along the same path.'''
how_string_1 = '''I'm [Chris Drymon](https://chrisdrymon.com). I primarily work in Python - this project included. It
utilizes Princeton's
[English WordNet](https://wordnet.princeton.edu/) through the [Natural Language Toolkit](https://www.nltk.org/). The
front end web app was made with [Dash](https://plotly.com/dash/) while the semantic domains visualizations were created
using [Plotly](https://plotly.com/). It has been deployed on [Heroku's](https://www.heroku.com) free tier (which
required careful memory management) using the [Green Unicorn WSGI Server](https://gunicorn.org).'''
# Run the server. This is how we choose what the initially loaded graph will be.
app = dash.Dash(__name__)
app.layout = initial_layout()
app.title = 'Semantic Domains Visualizer'
# This runs the randoms word input
@app.callback(
Output('input-state', 'value'),
[Input('random-button', 'n_clicks')],
[State('language-sel', 'value')]
)
def random_word(clicks, lang):
if clicks is None:
raise PreventUpdate
else:
if lang == 'english':
return random.choice(english_nouns)
else:
return random.choice(pro_words)
# This is how the page is updated after entering a new word.
@app.callback(
[Output('graph-title', 'children'),
Output('sem-dom-graph', 'figure'),
Output('right-box-1', 'children'),
Output('right-box-2', 'children'),
Output('right-box-2', 'className'),
Output('right-box-3', 'children'),
Output('right-box-3', 'className'),
Output('right-box-4', 'children')],
[Input('input-state', 'value')],
[State('language-sel', 'value')]
)
def update_fig(word, lang):
return make_dash(word, lang)
# This refreshes the left info panel upon changing the language radio selector.
@app.callback(
[Output('info-container', 'children'),
Output('mobile-info', 'children')],
[Input('language-sel', 'value')]
)
def change_language(language):
if language == 'english':
div = [html.H3(className='info-head',
children='What is this?'),
dcc.Markdown(what_string_1), html.Br(),
dcc.Markdown(what_string_2), html.Br(),
dcc.Markdown(what_string_3), html.Br(),
html.H3(className='info-head',
children='Why Do This?'),
dcc.Markdown(why_string_1), html.Br(),
html.H3(className='info-head',
children='Who & How'),
dcc.Markdown(how_string_1)
]
return div, div
else:
div = [html.H5(className='info-head',
children=html.H5("Don't know Greek? Type an English word and I'll try to translate "
"it into an Ancient Greek noun!")),
html.Br(),
dcc.Markdown("""If you are typing a word in Greek and are unsure of the proper accentuation, don't fret!
We will try a series of accentuation patterns if the initial entry is not found. If any entry is still
not found, the app will attempt to look up a lemmatized version of the word."""),
html.Br(),
dcc.Markdown("""This project relies upon Ancient Greek WordNet which is far from complete. Data
is frequently unavailable. In place of the hierarchy of semantic domains found in English WordNet,
Ancient Greek WordNet offers broad semantic fields which are based on the dewey
decimal system. Additionally, almost none of the definitions of the synsets have been manually
verified for accuracy. In order to quickly create
something functional, a method was devised by which the synsets of modern English words could be
automatically applied to appropriate Ancient Greek words. This was a huge step forward but is prone to
frequent error. One might notice that this app will sometimes return an inordinate number of definitions
for a given Greek word. That is not because Ancient Greek words tend to have a gratuituous number of
possible meanings, but is just a consequence of the imprecision that currently exists in the Ancient
Greek version of WordNet. As progress is made in its construction, these problems will be cleared up. In
the meantime, use the unvalidated information with caution.""", dedent=True),
html.Br(),
dcc.Markdown("""In addition to the resources used to create the English visualization, the Ancient
Greek version uses:"""),
html.Br(),
dcc.Markdown("""
* [Ancient Greek WordNet](https://greekwordnet.chs.harvard.edu/) which is hosted by Harvard's Center
for Hellenistic Studies
* [The Classical Language ToolKit](http://cltk.org/) created by Kyle P. Johnson et al.
* James Tauber's [Greek Accentuation Library](https://github.com/jtauber/greek-accentuation)""")
]
return div, div
if __name__ == '__main__':
app.run_server(debug=True)