-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathtools.py
45 lines (43 loc) · 1.59 KB
/
tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import torch
import numpy as np
from torchvision.utils import save_image
def count_params(module, trainable_only=True):
"""Count the number of parameters in a
module.
:param module: PyTorch module
:param trainable_only: only count trainable
parameters.
:returns: number of parameters
:rtype:
"""
parameters = module.parameters()
if trainable_only:
parameters = filter(lambda p: p.requires_grad, parameters)
num = sum([np.prod(p.size()) for p in parameters])
return num
def generate_rotations(gan,
z_batch,
out_folder,
axis='x',
min_angle=None,
max_angle=None,
num=5):
if min_angle is None:
min_angle = gan.angles['min_angle_%s' % axis]
if max_angle is None:
max_angle = gan.angles['max_angle_%s' % axis]
from itertools import chain
linspace = chain(np.linspace(min_angle, max_angle, num),
np.linspace(max_angle, min_angle, num))
with torch.no_grad():
for idx,p in enumerate(linspace):
#enc_rot = gan.rotate_random(enc, angle=p)
angles = np.zeros((z_batch.size(0), 3)).astype(np.float32)
angles[:, gan.rot2idx[axis]] += p
thetas = gan.get_theta(angles)
if z_batch.is_cuda:
thetas = thetas.cuda()
x_fake = gan.g(z_batch, thetas)
#pbuf.append(x_fake*0.5 + 0.5)
save_image(x_fake*0.5 + 0.5,
"%s/{0:06d}.png".format(idx) % (out_folder))