-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdatasets.py
143 lines (114 loc) · 4.61 KB
/
datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import numpy as np
import sklearn
import sklearn.datasets
from sklearn.utils import shuffle as util_shuffle
def generate_swiss_roll(batch_size):
data = sklearn.datasets.make_swiss_roll(n_samples=batch_size, noise=1.0)[0]
data = data.astype("float32")[:, [0, 2]]
data /= 5
return data
def generate_circle_dataset(n_train):
circles_train = sklearn.datasets.make_circles(n_samples=n_train, factor=.5, noise=0.08)[0]
circles_train = circles_train.astype("float32")
circles_train *= 3
return circles_train
def generate_rings_dataset(n_train):
rng = np.random.RandomState()
obs = n_train
n_train = n_train * 20
n_samples4 = n_samples3 = n_samples2 = n_train // 4
n_samples1 = n_train - n_samples4 - n_samples3 - n_samples2
# so as not to have the first point = last point, we set endpoint=False
linspace4 = np.linspace(0, 2 * np.pi, n_samples4, endpoint=False)
linspace3 = np.linspace(0, 2 * np.pi, n_samples3, endpoint=False)
linspace2 = np.linspace(0, 2 * np.pi, n_samples2, endpoint=False)
linspace1 = np.linspace(0, 2 * np.pi, n_samples1, endpoint=False)
circ4_x = np.cos(linspace4)
circ4_y = np.sin(linspace4)
circ3_x = np.cos(linspace4) * 0.75
circ3_y = np.sin(linspace3) * 0.75
circ2_x = np.cos(linspace2) * 0.5
circ2_y = np.sin(linspace2) * 0.5
circ1_x = np.cos(linspace1) * 0.25
circ1_y = np.sin(linspace1) * 0.25
X = np.vstack([
np.hstack([circ4_x, circ3_x, circ2_x, circ1_x]),
np.hstack([circ4_y, circ3_y, circ2_y, circ1_y])
]).T * 3.0
X = util_shuffle(X, random_state=rng)
# Add noise
X = X + rng.normal(scale=0.08, size=X.shape)
inds = np.random.choice(list(range(n_train)), obs)
X = X[inds]
return X.astype("float32")
def generate_moons_dataset(n_train):
data = sklearn.datasets.make_moons(n_samples=n_train, noise=0.1)[0]
data = data.astype("float32")
data = data * 2 + np.array([-1, -0.2])
return data
def generate_gaussians_dataset(n_train):
batch_size = n_train
rng = np.random.RandomState()
scale = 4.
centers = [(1, 0), (-1, 0), (0, 1), (0, -1), (1. / np.sqrt(2), 1. / np.sqrt(2)),
(1. / np.sqrt(2), -1. / np.sqrt(2)), (-1. / np.sqrt(2),
1. / np.sqrt(2)), (-1. / np.sqrt(2), -1. / np.sqrt(2))]
centers = [(scale * x, scale * y) for x, y in centers]
dataset = []
for i in range(batch_size):
point = rng.randn(2) * 0.5
idx = rng.randint(8)
center = centers[idx]
point[0] += center[0]
point[1] += center[1]
dataset.append(point)
dataset = np.array(dataset, dtype="float32")
dataset /= 1.414
return dataset
def generate_pinwheel_dataset(n_train):
batch_size = n_train
rng = np.random.RandomState()
radial_std = 0.3
tangential_std = 0.1
num_classes = 5
num_per_class = batch_size // 5
rate = 0.25
rads = np.linspace(0, 2 * np.pi, num_classes, endpoint=False)
features = rng.randn(num_classes * num_per_class, 2) \
* np.array([radial_std, tangential_std])
features[:, 0] += 1.
labels = np.repeat(np.arange(num_classes), num_per_class)
angles = rads[labels] + rate * np.exp(features[:, 0])
rotations = np.stack([np.cos(angles), -np.sin(angles), np.sin(angles), np.cos(angles)])
rotations = np.reshape(rotations.T, (-1, 2, 2))
pinwheel_train = rng.permutation(np.einsum("ti,tij->tj", features, rotations))
return pinwheel_train
def generate_spirals_dataset(n_train):
batch_size = n_train
n = np.sqrt(np.random.rand(batch_size // 2, 1)) * 540 * (2 * np.pi) / 360
d1x = -np.cos(n) * n + np.random.rand(batch_size // 2, 1) * 0.5
d1y = np.sin(n) * n + np.random.rand(batch_size // 2, 1) * 0.5
x = np.vstack((np.hstack((d1x, d1y)), np.hstack((-d1x, -d1y)))) / 3
x += np.random.randn(*x.shape) * 0.1
return x
def generate_checkboard_dataset(n_train):
batch_size = n_train
x1 = np.random.rand(batch_size) * 4 - 2
x2_ = np.random.rand(batch_size) - np.random.randint(0, 2, batch_size) * 2
x2 = x2_ + (np.floor(x1) % 2)
checkerboard_train = np.concatenate([x1[:, None], x2[:, None]], 1) * 2
return checkerboard_train
def generate_line_dataset(n_train):
batch_size = n_train
rng = np.random.RandomState()
x = rng.rand(batch_size) * 5 - 2.5
y = x
line_train = np.stack((x, y), 1)
return line_train
def generate_cosine_dataset(n_train):
batch_size = n_train
rng = np.random.RandomState()
x = rng.rand(batch_size) * 5 - 2.5
y = np.sin(x) * 2.5
cosine_train = np.stack((x, y), 1)
return cosine_train