-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_census_compare.py
97 lines (70 loc) · 4.15 KB
/
extract_census_compare.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
#!/bin/python
import psycopg2
import psycopg2.extras
import json
from collections import OrderedDict
conn = psycopg2.connect(database='postgres')
cur = conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor)
# 050 is county, 060 is metro areas
# 17 is IL FIPS code
geoid_prefix = '05000US17%'
def sum(data, *columns):
def reduce_fn(x, y):
if x and y:
return x + y
elif x and not y:
return x
elif y and not x:
return y
else:
return None
return reduce(reduce_fn, map(lambda col: data[col], columns))
def maybe_int(i):
return int(i) if i else i
cur.execute("SELECT * FROM acs2010_1yr.geoheader WHERE geoid LIKE %s;", [geoid_prefix])
geoheaders = cur.fetchall()
doc = []
for geo in geoheaders:
state = geo['stusab']
logrecno = geo['logrecno']
one_geom = dict(population=dict(), geography=dict(), education=dict())
one_geom['geography'] = dict(name=geo['name'],
geoid=geo['geoid'],
stusab=geo['stusab'],
sumlevel=geo['sumlevel'])
cur.execute("SELECT * FROM acs2010_1yr.B01003 WHERE stusab=%s AND logrecno=%s;", [state, logrecno])
data = cur.fetchone()
one_geom['population']['total'] = maybe_int(data['b010030001'])
cur.execute("SELECT * FROM acs2010_1yr.B01001 WHERE stusab=%s AND logrecno=%s;", [state, logrecno])
data = cur.fetchone()
one_geom['population']['gender'] = OrderedDict([
('0-9', dict(male=maybe_int(sum(data, 'b010010003', 'b010010004')),
female=maybe_int(sum(data, 'b010010027', 'b010010028')),
total=maybe_int(sum(data, 'b010010003', 'b010010004', 'b010010027', 'b010010028')))),
('10-19', dict(male=maybe_int(sum(data, 'b010010005', 'b010010006', 'b010010007')),
female=maybe_int(sum(data, 'b010010029', 'b010010030', 'b010010031')),
total=maybe_int(sum(data, 'b010010005', 'b010010006', 'b010010007', 'b010010029', 'b010010030', 'b010010031')))),
('20-29', dict(male=maybe_int(sum(data, 'b010010008', 'b010010009', 'b010010010', 'b010010011')),
female=maybe_int(sum(data, 'b010010032', 'b010010033', 'b010010034', 'b010010035')),
total=maybe_int(sum(data, 'b010010008', 'b010010009', 'b010010010', 'b010010011', 'b010010032', 'b010010033', 'b010010034', 'b010010035')))),
('30-39', dict(male=maybe_int(sum(data, 'b010010012', 'b010010013')),
female=maybe_int(sum(data, 'b010010036', 'b010010037')),
total=maybe_int(sum(data, 'b010010012', 'b010010013', 'b010010036', 'b010010037')))),
('40-49', dict(male=maybe_int(sum(data, 'b010010014', 'b010010015')),
female=maybe_int(sum(data, 'b010010038', 'b010010039')),
total=maybe_int(sum(data, 'b010010014', 'b010010015', 'b010010038', 'b010010039')))),
('50-59', dict(male=maybe_int(sum(data, 'b010010016', 'b010010017')),
female=maybe_int(sum(data, 'b010010040', 'b010010041')),
total=maybe_int(sum(data, 'b010010016', 'b010010017', 'b010010040', 'b010010041')))),
('60-69', dict(male=maybe_int(sum(data, 'b010010018', 'b010010019', 'b010010020', 'b010010021')),
female=maybe_int(sum(data, 'b010010042', 'b010010043', 'b010010044', 'b010010045')),
total=maybe_int(sum(data, 'b010010018', 'b010010019', 'b010010020', 'b010010021', 'b010010042', 'b010010043', 'b010010044', 'b010010045')))),
('70-79', dict(male=maybe_int(sum(data, 'b010010022', 'b010010023')),
female=maybe_int(sum(data, 'b010010046', 'b010010047')),
total=maybe_int(sum(data, 'b010010022', 'b010010023', 'b010010046', 'b010010047')))),
('80+', dict(male=maybe_int(sum(data, 'b010010024', 'b010010025')),
female=maybe_int(sum(data, 'b010010048', 'b010010049')),
total=maybe_int(sum(data, 'b010010024', 'b010010025', 'b010010048', 'b010010049'))))
])
doc.append(one_geom)
print json.dumps(doc, indent=2)