-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathextract_census_doc.py
128 lines (104 loc) · 7.24 KB
/
extract_census_doc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
#!/bin/python
import psycopg2
import psycopg2.extras
import json
from collections import OrderedDict
conn = psycopg2.connect(database='postgres')
cur = conn.cursor(cursor_factory=psycopg2.extras.RealDictCursor)
state = 'IL'
logrecno = '89' # Evanston city, IL
def sum(data, *columns):
def reduce_fn(x, y):
if x and y:
return x + y
elif x and not y:
return x
elif y and not x:
return y
else:
return None
return reduce(reduce_fn, map(lambda col: data[col], columns))
def maybe_int(i):
return int(i) if i else i
doc = dict(population=dict(), geography=dict(), education=dict())
cur.execute("SELECT * FROM acs2010_1yr.geoheader WHERE stusab=%s AND logrecno=%s;", [state, logrecno])
data = cur.fetchone()
doc['geography'] = dict(name=data['name'],
stusab=data['stusab'],
sumlevel=data['sumlevel'])
cur.execute("SELECT * FROM acs2010_1yr.B01002 WHERE stusab=%s AND logrecno=%s;", [state, logrecno])
data = cur.fetchone()
doc['population']['median_age'] = dict(total=maybe_int(data['b010020001']),
male=maybe_int(data['b010020002']),
female=maybe_int(data['b010020003']))
cur.execute("SELECT * FROM acs2010_1yr.B01003 WHERE stusab=%s AND logrecno=%s;", [state, logrecno])
data = cur.fetchone()
doc['population']['total'] = maybe_int(data['b010030001'])
cur.execute("SELECT * FROM acs2010_1yr.B01001 WHERE stusab=%s AND logrecno=%s;", [state, logrecno])
data = cur.fetchone()
doc['population']['gender'] = OrderedDict([
('0-9', dict(male=maybe_int(sum(data, 'b010010003', 'b010010004')),
female=maybe_int(sum(data, 'b010010027', 'b010010028')))),
('10-19', dict(male=maybe_int(sum(data, 'b010010005', 'b010010006', 'b010010007')),
female=maybe_int(sum(data, 'b010010029', 'b010010030', 'b010010031')))),
('20-29', dict(male=maybe_int(sum(data, 'b010010008', 'b010010009', 'b010010010', 'b010010011')),
female=maybe_int(sum(data, 'b010010032', 'b010010033', 'b010010034', 'b010010035')))),
('30-39', dict(male=maybe_int(sum(data, 'b010010012', 'b010010013')),
female=maybe_int(sum(data, 'b010010036', 'b010010037')))),
('40-49', dict(male=maybe_int(sum(data, 'b010010014', 'b010010015')),
female=maybe_int(sum(data, 'b010010038', 'b010010039')))),
('50-59', dict(male=maybe_int(sum(data, 'b010010016', 'b010010017')),
female=maybe_int(sum(data, 'b010010040', 'b010010041')))),
('60-69', dict(male=maybe_int(sum(data, 'b010010018', 'b010010019', 'b010010020', 'b010010021')),
female=maybe_int(sum(data, 'b010010042', 'b010010043', 'b010010044', 'b010010045')))),
('70-79', dict(male=maybe_int(sum(data, 'b010010022', 'b010010023')),
female=maybe_int(sum(data, 'b010010046', 'b010010047')))),
('80+', dict(male=maybe_int(sum(data, 'b010010024', 'b010010025')),
female=maybe_int(sum(data, 'b010010048', 'b010010049'))))
])
cur.execute("SELECT * FROM acs2010_1yr.B15001 WHERE stusab=%s AND logrecno=%s;", [state, logrecno])
data = cur.fetchone()
doc['education']['attainment'] = OrderedDict([
('<9th Grade', maybe_int(sum(data, 'b150010004', 'b150010012', 'b150010020', 'b150010028', 'b150010036', 'b150010045', 'b150010053', 'b150010061', 'b150010069', 'b150010077'))),
('9th-12th Grade (No Diploma)', maybe_int(sum(data, 'b150010005', 'b150010013', 'b150010021', 'b150010029', 'b150010037', 'b150010046', 'b150010054', 'b150010062', 'b150010070', 'b150010078'))),
('High School Grad/GED/Alt', maybe_int(sum(data, 'b150010006', 'b150010014', 'b150010022', 'b150010030', 'b150010038', 'b150010047', 'b150010055', 'b150010063', 'b150010071', 'b150010079'))),
('Some College (No Degree)', maybe_int(sum(data, 'b150010007', 'b150010015', 'b150010023', 'b150010031', 'b150010039', 'b150010048', 'b150010056', 'b150010064', 'b150010072', 'b150010080'))),
('Associate Degree', maybe_int(sum(data, 'b150010008', 'b150010016', 'b150010024', 'b150010032', 'b150010040', 'b150010049', 'b150010057', 'b150010065', 'b150010073', 'b150010081'))),
('Bachelor Degree', maybe_int(sum(data, 'b150010009', 'b150010017', 'b150010025', 'b150010033', 'b150010041', 'b150010050', 'b150010058', 'b150010066', 'b150010074', 'b150010082'))),
('Graduate or Professional Degree', maybe_int(sum(data, 'b150010010', 'b150010018', 'b150010026', 'b150010034', 'b150010042', 'b150010051', 'b150010059', 'b150010067', 'b150010075', 'b150010083')))
])
cur.execute("SELECT * FROM acs2010_1yr.C16001 WHERE stusab=%s AND logrecno=%s;", [state, logrecno])
data = cur.fetchone()
doc['language'] = OrderedDict([
('English Only', maybe_int(data['c160010002'])),
('Spanish', maybe_int(data['c160010003'])),
('French', maybe_int(data['c160010004'])),
('German', maybe_int(data['c160010005'])),
('Slavic', maybe_int(data['c160010006'])),
('Other Indo-European', maybe_int(data['c160010007'])),
('Korean', maybe_int(data['c160010008'])),
('Chinese', maybe_int(data['c160010009'])),
('Vietnamese', maybe_int(data['c160010010'])),
('Tagalong', maybe_int(data['c160010011'])),
('Other Asian', maybe_int(data['c160010012'])),
('Other & Unspecified', maybe_int(data['c160010013']))
])
cur.execute("SELECT * FROM acs2010_1yr.B27010 WHERE stusab=%s AND logrecno=%s;", [state, logrecno])
data = cur.fetchone()
doc['insurance'] = OrderedDict([
('No Insurance', maybe_int(sum(data, 'b270100017', 'b270100033', 'b270100050', 'b270100053'))),
('Employer Only', maybe_int(sum(data, 'b270100004', 'b270100020', 'b270100036', 'b270100054'))),
('Direct-Purchase Only', maybe_int(sum(data, 'b270100005', 'b270100021', 'b270100037', 'b270100055'))),
('Medicare Only', maybe_int(sum(data, 'b270100006', 'b270100022', 'b270100038' ))),
('Medicaid/Means-Tested Only', maybe_int(sum(data, 'b270100007', 'b270100023', 'b270100039' ))),
('Tricare/Military Only', maybe_int(sum(data, 'b270100008', 'b270100024', 'b270100040', 'b270100056'))),
('VA Health Care Only', maybe_int(sum(data, 'b270100009', 'b270100025', 'b270100041', 'b270100057'))),
('Employer+Direct Purchase', maybe_int(sum(data, 'b270100011', 'b270100027', 'b270100043', 'b270100058'))),
('Employer+Medicare', maybe_int(sum(data, 'b270100012', 'b270100028', 'b270100044', 'b270100059'))),
('Direct+Medicare', maybe_int(sum(data, 'b270100045', 'b270100060'))),
('Medicare+Medicaid', maybe_int(sum(data, 'b270100013', 'b270100029', 'b270100046', 'b270100061'))),
('Other Private-Only', maybe_int(sum(data, 'b270100014', 'b270100030', 'b270100047', 'b270100062'))),
('Other Public-Only', maybe_int(sum(data, 'b270100015', 'b270100031', 'b270100048', 'b270100064'))),
('Other', maybe_int(sum(data, 'b270100016', 'b270100032', 'b270100049', 'b270100065')))
])
print json.dumps(doc, indent=2)