-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_eager.py
434 lines (390 loc) · 20.8 KB
/
train_eager.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
import os
import time
from functools import partial
import numpy as np
import tensorflow as tf
import tensorflow.keras.backend as K
from tensorflow.keras.callbacks import (EarlyStopping, ReduceLROnPlateau,
TensorBoard)
from tensorflow.keras.layers import Input, Lambda
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import Adam
from tqdm import tqdm
from nets.loss import yolo_loss
from nets.yolo4_tiny import yolo_body
from utils.utils import (ModelCheckpoint, WarmUpCosineDecayScheduler,
get_random_data, get_random_data_with_Mosaic, rand)
#---------------------------------------------------#
# 获得类和先验框
#---------------------------------------------------#
def get_classes(classes_path):
'''loads the classes'''
with open(classes_path) as f:
class_names = f.readlines()
class_names = [c.strip() for c in class_names]
return class_names
def get_anchors(anchors_path):
'''loads the anchors from a file'''
with open(anchors_path) as f:
anchors = f.readline()
anchors = [float(x) for x in anchors.split(',')]
return np.array(anchors).reshape(-1, 2)
#---------------------------------------------------#
# 训练数据生成器
#---------------------------------------------------#
def data_generator(annotation_lines, batch_size, input_shape, anchors, num_classes, mosaic=False, random=True):
n = len(annotation_lines)
i = 0
flag = True
while True:
image_data = []
box_data = []
for b in range(batch_size):
if i==0:
np.random.shuffle(annotation_lines)
if mosaic:
if flag and (i+4) < n:
image, box = get_random_data_with_Mosaic(annotation_lines[i:i+4], input_shape)
i = (i+4) % n
else:
image, box = get_random_data(annotation_lines[i], input_shape, random=random)
i = (i+1) % n
flag = bool(1-flag)
else:
image, box = get_random_data(annotation_lines[i], input_shape, random=random)
i = (i+1) % n
image_data.append(image)
box_data.append(box)
image_data = np.array(image_data)
box_data = np.array(box_data)
y_true = preprocess_true_boxes(box_data, input_shape, anchors, num_classes)
yield image_data, y_true[0], y_true[1]
#---------------------------------------------------#
# 读入xml文件,并输出y_true
#---------------------------------------------------#
def preprocess_true_boxes(true_boxes, input_shape, anchors, num_classes):
assert (true_boxes[..., 4]<num_classes).all(), 'class id must be less than num_classes'
# 一共有两个特征层数
num_layers = len(anchors)//3
#-----------------------------------------------------------#
# 13x13的特征层对应的anchor是[81,82], [135,169], [344,319]
# 26x26的特征层对应的anchor是[23,27], [37,58], [81,82]
#-----------------------------------------------------------#
anchor_mask = [[6,7,8], [3,4,5], [0,1,2]] if num_layers == 3 else [[3,4,5], [1,2,3]]
#-----------------------------------------------------------#
# 获得框的坐标和图片的大小
#-----------------------------------------------------------#
true_boxes = np.array(true_boxes, dtype='float32')
input_shape = np.array(input_shape, dtype='int32')
#-----------------------------------------------------------#
# 通过计算获得真实框的中心和宽高
# 中心点(m,n,2) 宽高(m,n,2)
#-----------------------------------------------------------#
boxes_xy = (true_boxes[..., 0:2] + true_boxes[..., 2:4]) // 2
boxes_wh = true_boxes[..., 2:4] - true_boxes[..., 0:2]
#-----------------------------------------------------------#
# 将真实框归一化到小数形式
#-----------------------------------------------------------#
true_boxes[..., 0:2] = boxes_xy/input_shape[::-1]
true_boxes[..., 2:4] = boxes_wh/input_shape[::-1]
# m为图片数量,grid_shapes为网格的shape
m = true_boxes.shape[0]
grid_shapes = [input_shape//{0:32, 1:16, 2:8}[l] for l in range(num_layers)]
#-----------------------------------------------------------#
# y_true的格式为(m,13,13,3,85)(m,26,26,3,85)
#-----------------------------------------------------------#
y_true = [np.zeros((m,grid_shapes[l][0],grid_shapes[l][1],len(anchor_mask[l]),5+num_classes),
dtype='float32') for l in range(num_layers)]
#-----------------------------------------------------------#
# [6,2] -> [1,6,2]
#-----------------------------------------------------------#
anchors = np.expand_dims(anchors, 0)
anchor_maxes = anchors / 2.
anchor_mins = - anchor_maxes
#-----------------------------------------------------------#
# 长宽要大于0才有效
#-----------------------------------------------------------#
valid_mask = boxes_wh[..., 0]>0
for b in range(m):
# 对每一张图进行处理
wh = boxes_wh[b, valid_mask[b]]
if len(wh) == 0: continue
#-----------------------------------------------------------#
# [n,2] -> [n,1,2]
#-----------------------------------------------------------#
wh = np.expand_dims(wh, -2)
box_maxes = wh / 2.
box_mins = -box_maxes
#-----------------------------------------------------------#
# 计算所有真实框和先验框的交并比
# intersect_area [n,6]
# box_area [n,1]
# anchor_area [1,6]
# iou [n,6]
#-----------------------------------------------------------#
intersect_mins = np.maximum(box_mins, anchor_mins)
intersect_maxes = np.minimum(box_maxes, anchor_maxes)
intersect_wh = np.maximum(intersect_maxes - intersect_mins, 0.)
intersect_area = intersect_wh[..., 0] * intersect_wh[..., 1]
box_area = wh[..., 0] * wh[..., 1]
anchor_area = anchors[..., 0] * anchors[..., 1]
iou = intersect_area / (box_area + anchor_area - intersect_area)
#-----------------------------------------------------------#
# 维度是[n,] 感谢 消尽不死鸟 的提醒
#-----------------------------------------------------------#
best_anchor = np.argmax(iou, axis=-1)
for t, n in enumerate(best_anchor):
#-----------------------------------------------------------#
# 找到每个真实框所属的特征层
#-----------------------------------------------------------#
for l in range(num_layers):
if n in anchor_mask[l]:
i = np.floor(true_boxes[b,t,0] * grid_shapes[l][1]).astype('int32')
j = np.floor(true_boxes[b,t,1] * grid_shapes[l][0]).astype('int32')
#-----------------------------------------------------------#
# k指的的当前这个特征点的第k个先验框
#-----------------------------------------------------------#
k = anchor_mask[l].index(n)
#-----------------------------------------------------------#
# c指的是当前这个真实框的种类
#-----------------------------------------------------------#
c = true_boxes[b, t, 4].astype('int32')
#-----------------------------------------------------------#
# y_true的shape为(m,13,13,3,85)(m,26,26,3,85)(m,52,52,3,85)
# 最后的85可以拆分成4+1+80,4代表的是框的中心与宽高、
# 1代表的是置信度、80代表的是种类
#-----------------------------------------------------------#
y_true[l][b, j, i, k, 0:4] = true_boxes[b, t, 0:4]
y_true[l][b, j, i, k, 4] = 1
y_true[l][b, j, i, k, 5+c] = 1
return y_true
# 防止bug
def get_train_step_fn():
@tf.function
def train_step(imgs, yolo_loss, targets, net, optimizer, regularization):
with tf.GradientTape() as tape:
# 计算loss
P5_output, P4_output = net(imgs, training=True)
args = [P5_output, P4_output] + targets
loss_value = yolo_loss(args,anchors,num_classes,label_smoothing=label_smoothing)
if regularization:
# 加入正则化损失
loss_value = tf.reduce_sum(net.losses) + loss_value
grads = tape.gradient(loss_value, net.trainable_variables)
optimizer.apply_gradients(zip(grads, net.trainable_variables))
return loss_value
return train_step
def fit_one_epoch(net, yolo_loss, optimizer, epoch, epoch_size, epoch_size_val, gen, genval, Epoch, anchors,
num_classes, label_smoothing, regularization=False, train_step=None):
loss = 0
val_loss = 0
with tqdm(total=epoch_size,desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval = 0.3) as pbar:
for iteration, batch in enumerate(gen):
if iteration>=epoch_size:
break
images, target0, target1 = batch[0], batch[1], batch[2]
targets = [target0, target1]
targets = [tf.convert_to_tensor(target) for target in targets]
loss_value = train_step(images, yolo_loss, targets, net, optimizer, regularization)
loss = loss + loss_value
pbar.set_postfix(**{'total_loss': float(loss) / (iteration + 1),
'lr' : optimizer._decayed_lr(tf.float32).numpy()})
pbar.update(1)
print('Start Validation')
with tqdm(total=epoch_size_val, desc=f'Epoch {epoch + 1}/{Epoch}',postfix=dict,mininterval=0.3) as pbar:
for iteration, batch in enumerate(genval):
if iteration>=epoch_size_val:
break
# 计算验证集loss
images, target0, target1 = batch[0], batch[1], batch[2]
targets = [target0, target1]
targets = [tf.convert_to_tensor(target) for target in targets]
P5_output, P4_output = net(images)
args = [P5_output, P4_output] + targets
loss_value = yolo_loss(args,anchors,num_classes,label_smoothing = label_smoothing)
if regularization:
# 加入正则化损失
loss_value = tf.reduce_sum(net.losses) + loss_value
# 更新验证集loss
val_loss = val_loss + loss_value
pbar.set_postfix(**{'total_loss': float(val_loss)/ (iteration + 1)})
pbar.update(1)
print('Finish Validation')
print('Epoch:'+ str(epoch+1) + '/' + str(Epoch))
print('Total Loss: %.4f || Val Loss: %.4f ' % (loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
net.save_weights('logs/Epoch%d-Total_Loss%.4f-Val_Loss%.4f.h5'%((epoch+1),loss/(epoch_size+1),val_loss/(epoch_size_val+1)))
gpus = tf.config.experimental.list_physical_devices(device_type='GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
#----------------------------------------------------#
# 检测精度mAP和pr曲线计算参考视频
# https://www.bilibili.com/video/BV1zE411u7Vw
#----------------------------------------------------#
if __name__ == "__main__":
#----------------------------------------------------#
# 获得图片路径和标签
#----------------------------------------------------#
annotation_path = '2007_train.txt'
#------------------------------------------------------#
# 训练后的模型保存的位置,保存在logs文件夹里面
#------------------------------------------------------#
log_dir = 'logs/'
#----------------------------------------------------#
# classes和anchor的路径,非常重要
# 训练前一定要修改classes_path,使其对应自己的数据集
#----------------------------------------------------#
classes_path = 'model_data/voc_classes.txt'
anchors_path = 'model_data/yolo_anchors.txt'
#------------------------------------------------------#
# 权值文件请看README,百度网盘下载
# 训练自己的数据集时提示维度不匹配正常
# 预测的东西都不一样了自然维度不匹配
#------------------------------------------------------#
weights_path = 'model_data/yolov4_tiny_weights_coco.h5'
#------------------------------------------------------#
# 训练用图片大小
# 一般在416x416和608x608选择
#------------------------------------------------------#
input_shape = (416,416)
#------------------------------------------------------#
# 是否对损失进行归一化
#------------------------------------------------------#
normalize = True
#----------------------------------------------------#
# 获取classes和anchor
#----------------------------------------------------#
class_names = get_classes(classes_path)
anchors = get_anchors(anchors_path)
#------------------------------------------------------#
# 一共有多少类和多少先验框
#------------------------------------------------------#
num_classes = len(class_names)
num_anchors = len(anchors)
#------------------------------------------------------#
# Yolov4的tricks应用
# mosaic 马赛克数据增强 True or False
# Cosine_scheduler 余弦退火学习率 True or False
# label_smoothing 标签平滑 0.01以下一般 如0.01、0.005
#------------------------------------------------------#
mosaic = False
Cosine_scheduler = False
label_smoothing = 0
regularization = True
#-------------------------------#
# Dataloder的使用
#-------------------------------#
Use_Data_Loader = True
#------------------------------------------------------#
# 创建yolo模型
#------------------------------------------------------#
image_input = Input(shape=(None, None, 3))
h, w = input_shape
print('Create YOLOv4 model with {} anchors and {} classes.'.format(num_anchors, num_classes))
model_body = yolo_body(image_input, num_anchors//2, num_classes)
#-------------------------------------------#
# 权值文件的下载请看README
#-------------------------------------------#
print('Load weights {}.'.format(weights_path))
model_body.load_weights(weights_path, by_name=True, skip_mismatch=True)
#----------------------------------------------------------------------#
# 验证集的划分在train.py代码里面进行
# 2007_test.txt和2007_val.txt里面没有内容是正常的。训练不会使用到。
# 当前划分方式下,验证集和训练集的比例为1:9
#----------------------------------------------------------------------#
val_split = 0.1
with open(annotation_path) as f:
lines = f.readlines()
np.random.seed(10101)
np.random.shuffle(lines)
np.random.seed(None)
num_val = int(len(lines)*val_split)
num_train = len(lines) - num_val
freeze_layers = 60
for i in range(freeze_layers): model_body.layers[i].trainable = False
print('Freeze the first {} layers of total {} layers.'.format(freeze_layers, len(model_body.layers)))
#------------------------------------------------------#
# 主干特征提取网络特征通用,冻结训练可以加快训练速度
# 也可以在训练初期防止权值被破坏。
# Init_Epoch为起始世代
# Freeze_Epoch为冻结训练的世代
# Epoch总训练世代
# 提示OOM或者显存不足请调小Batch_size
#------------------------------------------------------#
if True:
Init_epoch = 0
Freeze_epoch = 50
batch_size = 32
learning_rate_base = 1e-3
if Use_Data_Loader:
gen = partial(data_generator, annotation_lines = lines[:num_train], batch_size = batch_size, input_shape = input_shape,
anchors = anchors, num_classes = num_classes, mosaic=mosaic)
gen = tf.data.Dataset.from_generator(gen, (tf.float32, tf.float32, tf.float32))
gen_val = partial(data_generator, annotation_lines = lines[num_train:], batch_size = batch_size,
input_shape = input_shape, anchors = anchors, num_classes = num_classes, mosaic=False)
gen_val = tf.data.Dataset.from_generator(gen_val, (tf.float32, tf.float32, tf.float32))
gen = gen.shuffle(buffer_size=batch_size).prefetch(buffer_size=batch_size)
gen_val = gen_val.shuffle(buffer_size=batch_size).prefetch(buffer_size=batch_size)
else:
gen = data_generator(lines[:num_train], batch_size, input_shape, anchors, num_classes, mosaic=mosaic)
gen_val = data_generator(lines[num_train:], batch_size, input_shape, anchors, num_classes, mosaic=False)
epoch_size = num_train//batch_size
epoch_size_val = num_val//batch_size
if Cosine_scheduler:
lr_schedule = tf.keras.experimental.CosineDecayRestarts(
initial_learning_rate = learning_rate_base,
first_decay_steps = 5*epoch_size,
t_mul = 1.0,
alpha = 1e-2
)
else:
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=learning_rate_base,
decay_steps=epoch_size,
decay_rate=0.95,
staircase=True
)
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
for epoch in range(Init_epoch,Freeze_epoch):
fit_one_epoch(model_body, yolo_loss, optimizer, epoch, epoch_size, epoch_size_val,gen, gen_val,
Freeze_epoch, anchors, num_classes, label_smoothing, regularization, get_train_step_fn())
for i in range(freeze_layers): model_body.layers[i].trainable = True
# 解冻后训练
if True:
Freeze_epoch = 50
Epoch = 100
batch_size = 32
learning_rate_base = 1e-4
if Use_Data_Loader:
gen = partial(data_generator, annotation_lines = lines[:num_train], batch_size = batch_size, input_shape = input_shape,
anchors = anchors, num_classes = num_classes, mosaic=mosaic)
gen = tf.data.Dataset.from_generator(gen, (tf.float32, tf.float32, tf.float32))
gen_val = partial(data_generator, annotation_lines = lines[num_train:], batch_size = batch_size,
input_shape = input_shape, anchors = anchors, num_classes = num_classes, mosaic=False)
gen_val = tf.data.Dataset.from_generator(gen_val, (tf.float32, tf.float32, tf.float32))
gen = gen.shuffle(buffer_size=batch_size).prefetch(buffer_size=batch_size)
gen_val = gen_val.shuffle(buffer_size=batch_size).prefetch(buffer_size=batch_size)
else:
gen = data_generator(lines[:num_train], batch_size, input_shape, anchors, num_classes, mosaic=mosaic)
gen_val = data_generator(lines[num_train:], batch_size, input_shape, anchors, num_classes, mosaic=False)
epoch_size = num_train//batch_size
epoch_size_val = num_val//batch_size
if Cosine_scheduler:
lr_schedule = tf.keras.experimental.CosineDecayRestarts(
initial_learning_rate = learning_rate_base,
first_decay_steps = 5*epoch_size,
t_mul = 1.0,
alpha = 1e-2
)
else:
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate=learning_rate_base,
decay_steps = epoch_size,
decay_rate=0.95,
staircase=True
)
print('Train on {} samples, val on {} samples, with batch size {}.'.format(num_train, num_val, batch_size))
optimizer = tf.keras.optimizers.Adam(learning_rate=lr_schedule)
for epoch in range(Freeze_epoch,Epoch):
fit_one_epoch(model_body, yolo_loss, optimizer, epoch, epoch_size, epoch_size_val,gen, gen_val,
Epoch, anchors, num_classes, label_smoothing, regularization, get_train_step_fn())