-
Notifications
You must be signed in to change notification settings - Fork 9
/
rgbd2pc.py
134 lines (114 loc) · 4.88 KB
/
rgbd2pc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import numpy as np
import argparse
import os
import json
import imageio
import cv2
import torch
import open3d as o3d
import pdb
os.environ["OPENCV_IO_ENABLE_OPENEXR"]="1"
def parse_args():
parser = argparse.ArgumentParser(
description="warp rgbd images to pc")
parser.add_argument("--rgb_path",
type=str,
default='data/toy_utopia/rgb')
parser.add_argument("--depth_path",
type=str,
default='data/toy_utopia/depth')
parser.add_argument("--json_path",
type=str,
default='data/toy_utopia/transforms_1.json')
parser.add_argument("--save_path",
type=str,
default='data/toy_utopia/merge/point_cloud')
parser.add_argument("--ds", type=int, default=5)
parser.add_argument("--ratio", type=int, default=1)
parser.add_argument("--per_frame", action='store_true')
parser.add_argument("--all_frames", action='store_true')
parser.add_argument("--depth_cut", type=float, default=-1)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
os.makedirs(args.save_path,exist_ok=True)
os.makedirs(os.path.join(args.save_path,"per_frame"),exist_ok=True)
# load c2ws and intrics
with open(args.json_path, "r") as f:
meta = json.load(f)
cam_x = meta['camera_angle_x']
frames = meta["frames"]
cx = meta["cx"]/args.ds
cy = meta["cy"]/args.ds
w = int(meta["w"]/args.ds)
h = int(meta["h"]/args.ds)
fx = meta["fl_x"]/args.ds
fy = meta["fl_y"]/args.ds
c2ws = []
for frame in frames:
c2w=np.array(frame["transform_matrix"])
c2w[3,3]=1
c2ws.append(c2w.tolist())
c2ws=np.stack(c2ws) #[B,4,4]
# assume all images share the same intrinsic
intrinsic = np.array([[fx,0,cx],[0,fy,cy],[0,0,1]])
depths=[]
rgbs=[]
for i, frame in enumerate(frames):
file_path = frame['file_path']
rgb = cv2.imread(os.path.join(args.rgb_path,file_path))
rgb = cv2.cvtColor(rgb, cv2.COLOR_BGR2RGB)
rgb = cv2.resize(rgb, (w,h))
depth = cv2.imread(os.path.join(args.depth_path,file_path.replace("png","exr")), cv2.IMREAD_ANYCOLOR | cv2.IMREAD_ANYDEPTH)[...,0] / 10000. # cm -> 100m
depth = cv2.resize(depth, (w,h))
rgbs.append(rgb)
depths.append(depth)
rgbs = np.stack(rgbs) # [B,H,W,3]
depths = np.stack(depths) # [B,H,W,1]
# import pdb;pdb.set_trace()
# convert to torch
rgbs = torch.from_numpy(rgbs).float()
depths = torch.from_numpy(depths).float()
intrinsic = torch.from_numpy(intrinsic).float()
c2ws = torch.from_numpy(c2ws).float()
# project to world
all_points = []
all_colors = []
# Compute the pixel coordinates of each point in the depth image
for i in range(depths.shape[0]):
y, x = torch.meshgrid([torch.arange(0, h, dtype=torch.float32, device=depths.device),
torch.arange(0, w, dtype=torch.float32, device=depths.device)])
y, x = y.contiguous(), x.contiguous()
y, x = y.view(h * w), x.view(h * w)
xyz = torch.stack((x, y, torch.ones_like(x)))
# if depth > thre, mask
if args.depth_cut != -1:
depth_mask = depths[i] < args.depth_cut
else:
depth_mask = torch.ones(depths[i].shape,dtype=torch.bool)
# Convert pixel coordinates to camera coordinates
inv_K = torch.inverse(intrinsic)
cam_coords1 = inv_K.clone() @ (xyz.clone() * depths[i].reshape(-1))
cam_coords1[1,:] = -cam_coords1[1,:]
cam_coords1[2,:] = -cam_coords1[2,:]
world_coords = (c2ws[i] @ torch.cat([cam_coords1, torch.ones((1, cam_coords1.shape[1]))], dim=0)).T
world_coords = world_coords[:,:3]
world_coords = world_coords[depth_mask.reshape(-1)]
color = rgbs[i].reshape(-1,3)/255.
color = color[depth_mask.reshape(-1)]
all_points.append(world_coords)
all_colors.append(color)
if args.per_frame:
final_pcd = o3d.geometry.PointCloud()
final_pcd.points = o3d.utility.Vector3dVector(np.vstack(all_points[i]))
final_pcd.colors = o3d.utility.Vector3dVector(np.vstack(all_colors[i]))
o3d.io.write_point_cloud(os.path.join(args.save_path,"per_frame",f"{i}.ply"), final_pcd)
if args.all_frames:
merged_points = np.vstack(all_points)[::args.ratio,:]
merged_colors = np.vstack(all_colors)[::args.ratio,:]
# save the final point cloud
final_pcd = o3d.geometry.PointCloud()
final_pcd.points = o3d.utility.Vector3dVector(merged_points)
final_pcd.colors = o3d.utility.Vector3dVector(merged_colors)
o3d.io.write_point_cloud(os.path.join(args.save_path,"all.ply"), final_pcd)