This repository has been archived by the owner on Dec 24, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Organism.cpp
724 lines (590 loc) · 23.5 KB
/
Organism.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
// ***************************************************************************************************************
//
// Mini-Aevol is a reduced version of Aevol -- An in silico experimental evolution platform
//
// ***************************************************************************************************************
//
// Copyright: See the AUTHORS file provided with the package or <https://gitlab.inria.fr/rouzaudc/mini-aevol>
// Web: https://gitlab.inria.fr/rouzaudc/mini-aevol
// E-mail: See <jonathan.rouzaud-cornabas@inria.fr>
// Original Authors : Jonathan Rouzaud-Cornabas
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// ***************************************************************************************************************
#include <cmath>
#include "Organism.h"
using namespace std;
/**
* Constructor to generate a random organism (i.e. an organism with a random DNA)
*
* @param length : Length of the generated random DNA
*/
Organism::Organism(int length, Threefry::Gen &&rng) {
rna_count_ = 0;
dna_ = new Dna(length, std::move(rng));
}
/**
* Constructor to create a clone of a given Organism
*
* @param clone : The organism to clone
*/
Organism::Organism(const std::shared_ptr<Organism> &clone) {
rna_count_ = 0;
dna_ = new Dna(*(clone->dna_));
promoters_ = clone->promoters_;
}
/**
* Create an Organism from a backup/checkpointing file
*
* @param backup_file : gzFile to read from
*/
Organism::Organism(gzFile backup_file) {
rna_count_ = 0;
load(backup_file);
}
/**
* Destructor of an organism
*/
Organism::~Organism() {
for (auto rna : rnas) {
delete (rna);
}
rnas.clear();
for (auto prot : proteins) {
delete (prot);
}
proteins.clear();
terminators.clear();
delete dna_;
}
/**
* Save the organism to backup/checkpointing file
*
* @param backup_file : where to the save the organism
*/
void Organism::save(gzFile backup_file) const {
dna_->save(backup_file);
}
/**
* Load the organism from backup/checkpointing file
*
* @param backup_file : from where restore the organism
*/
void Organism::load(gzFile backup_file) {
dna_ = new Dna();
dna_->load(backup_file);
}
/**
* Reset the stats variable (used when an organism is a perfect clone of its parent, it means no mutation)
*/
void Organism::reset_mutation_stats() {
nb_swi_ = 0;
nb_mut_ = 0;
}
void Organism::compute_protein_stats() {
nb_genes_activ = 0;
nb_genes_inhib = 0;
nb_func_genes = 0;
nb_non_func_genes = 0;
nb_coding_RNAs = 0;
nb_non_coding_RNAs = 0;
for (int i = 0; i < rna_count_; i++) {
if (rnas[i] != nullptr) {
if (rnas[i]->is_coding_)
nb_coding_RNAs++;
else
nb_non_coding_RNAs++;
}
}
for (int i = 0; i < protein_count_; i++) {
if (rnas[i] != nullptr) {
if (proteins[i]->is_functional) {
nb_func_genes++;
} else {
nb_non_func_genes++;
}
if (proteins[i]->h > 0) {
nb_genes_activ++;
} else {
nb_genes_inhib++;
}
}
}
}
/** LOOK **/
void Organism::locate_promoters() {
look_for_new_promoters_starting_between(0, dna_->length_);
}
/**
* Apply all the mutation events of the organism on its DNA
*/
void Organism::apply_mutations(const list<MutationEvent *> &mutation_list) {
for (const auto *mutation: mutation_list) {
switch (mutation->type()) {
case DO_SWITCH:
do_switch(mutation->pos_1());
nb_swi_++;
nb_mut_++;
break;
}
}
}
void Organism::evaluate(const double *target) {
compute_RNA();
search_start_protein();
compute_protein();
translate_protein();
compute_phenotype();
compute_fitness(target);
}
void Organism::compute_RNA() {
proteins.clear();
rnas.clear();
terminators.clear();
rnas.resize(promoters_.size());
for (const auto &prom_pair: promoters_) {
int prom_pos = prom_pair.first;
/* Search for terminators */
int cur_pos = prom_pos + PROM_SIZE;
loop_back(cur_pos);
int start_pos = cur_pos;
bool terminator_found = false;
while (!terminator_found) {
int term_dist_leading = dna_->terminator_at(cur_pos);
if (term_dist_leading == TERM_STEM_SIZE)
terminator_found = true;
else {
cur_pos++;
loop_back(cur_pos);
if (cur_pos == start_pos) {
break;
}
}
}
if (terminator_found) {
int32_t rna_end = cur_pos + TERM_SIZE;
loop_back(rna_end);
int32_t rna_length;
if (start_pos > rna_end)
rna_length = (dna_->length_ + rna_end) - start_pos;
else
rna_length = rna_end - start_pos;
if (rna_length > 0) {
int glob_rna_idx = rna_count_;
rna_count_ = rna_count_ + 1;
rnas[glob_rna_idx] = new RNA(
prom_pos,
rna_end,
1.0 - std::fabs(((float) prom_pair.second)) / 5.0,
rna_length);
}
}
}
}
void Organism::search_start_protein() {
for (int rna_idx = 0; rna_idx < rna_count_; rna_idx++) {
const auto &rna = rnas[rna_idx];
int c_pos = rna->begin;
if (rna->length >= PROM_SIZE) {
c_pos += PROM_SIZE;
loop_back(c_pos);
while (c_pos != rna->end) {
if (dna_->shine_dal_start(c_pos)) {
rna->start_prot.push_back(c_pos);
}
c_pos++;
loop_back(c_pos);
}
}
}
}
void Organism::compute_protein() {
int resize_to = 0;
for (int rna_idx = 0; rna_idx < rna_count_; rna_idx++) {
resize_to += rnas[rna_idx]->start_prot.size();
}
proteins.resize(resize_to);
for (int rna_idx = 0; rna_idx < rna_count_; rna_idx++) {
auto* rna = rnas[rna_idx];
int transcribed_start = rna->begin + PROM_SIZE;
loop_back(transcribed_start);
for (int protein_idx = 0; protein_idx < rna->start_prot.size(); protein_idx++) {
int protein_start = rna->start_prot[protein_idx];
int current_position = protein_start + SD_TO_START;
loop_back(current_position);
int transcription_length;
if (transcribed_start <= protein_start) {
transcription_length = protein_start - transcribed_start;
} else {
transcription_length = dna_->length_ - transcribed_start + protein_start;
}
transcription_length += SD_TO_START;
while (rna->length - transcription_length >= CODON_SIZE) {
if (dna_->protein_stop(current_position)) {
int prot_length;
int protein_end = current_position + CODON_SIZE;
loop_back(protein_end);
if (protein_start + SD_TO_START < protein_end) {
prot_length = protein_end - (protein_start + SD_TO_START);
} else {
prot_length = (dna_->length_ + protein_end) - (protein_start + SD_TO_START);
}
if (prot_length > CODON_SIZE) { // it has at least 2 codons, among them a STOP
int glob_prot_idx = protein_count_;
protein_count_ += 1;
proteins[glob_prot_idx] =
new Protein(protein_start,
protein_end,
prot_length,
rna->e);
rna->is_coding_ = true;
}
break;
}
current_position += CODON_SIZE;
loop_back(current_position);
transcription_length += CODON_SIZE;
}
}
}
}
void Organism::translate_protein() {
for (int protein_idx = 0; protein_idx < protein_count_; protein_idx++) {
auto* protein = proteins[protein_idx];
if (protein->is_init_) {
int c_pos = protein->protein_start;
c_pos += SD_TO_START;
loop_back(c_pos);
int nb_codon = (protein->protein_length / 3) - 1; // Do not count the STOP codon
// Arbitrary limit to the number of codon in one gene
// It has black magic reasons
constexpr int FRACTION_SIZE = 52;
nb_codon = min(nb_codon, FRACTION_SIZE);
int codon_list[FRACTION_SIZE]{};
for (int codon_idx = 0; codon_idx < nb_codon; ++codon_idx) {
codon_list[codon_idx] = dna_->codon_at(c_pos);
c_pos += 3;
loop_back(c_pos);
}
/** This part of the code translate a Gray code binary to standard
* It looks like black magic (again) but the idea of the implementation can be found hear:
* https://www.elprocus.com/code-converter-binary-to-gray-code-and-gray-code-to-binary-conversion/ **/
double M = 0.0;
double W = 0.0;
double H = 0.0;
int nb_m = 0;
int nb_w = 0;
int nb_h = 0;
bool bin_m = false; // Initializing to false will yield a conservation of the high weight bit
bool bin_w = false; // when applying the XOR operator for the Gray to standard conversion
bool bin_h = false;
for (int i = 0; i < nb_codon; i++) {
switch (codon_list[i]) {
case CODON_M0 : {
// M codon found
nb_m++;
// Convert Gray code to "standard" binary code
bin_m ^= false; // as bin_m was initialized to false, the XOR will have no effect on the high weight bit
// A lower-than-the-previous-lowest weight bit was found, make a left bitwise shift
//~ M <<= 1;
M *= 2;
// Add this nucleotide's contribution to M
if (bin_m) M += 1;
break;
}
case CODON_M1 : {
// M codon found
nb_m++;
// Convert Gray code to "standard" binary code
bin_m ^= true; // as bin_m was initialized to false, the XOR will have no effect on the high weight bit
// A lower-than-the-previous-lowest bit was found, make a left bitwise shift
//~ M <<= 1;
M *= 2;
// Add this nucleotide's contribution to M
if (bin_m) M += 1;
break;
}
case CODON_W0 : {
// W codon found
nb_w++;
// Convert Gray code to "standard" binary code
bin_w ^= false; // as bin_m was initialized to false, the XOR will have no effect on the high weight bit
// A lower-than-the-previous-lowest weight bit was found, make a left bitwise shift
//~ W <<= 1;
W *= 2;
// Add this nucleotide's contribution to W
if (bin_w) W += 1;
break;
}
case CODON_W1 : {
// W codon found
nb_w++;
// Convert Gray code to "standard" binary code
bin_w ^= true; // as bin_m was initialized to false, the XOR will have no effect on the high weight bit
// A lower-than-the-previous-lowest weight bit was found, make a left bitwise shift
//~ W <<= 1;
W *= 2;
// Add this nucleotide's contribution to W
if (bin_w) W += 1;
break;
}
case CODON_H0 :
case CODON_START : // Start codon codes for the same amino-acid as H0 codon
{
// H codon found
nb_h++;
// Convert Gray code to "standard" binary code
bin_h ^= false; // as bin_m was initialized to false, the XOR will have no effect on the high weight bit
// A lower-than-the-previous-lowest weight bit was found, make a left bitwise shift
//~ H <<= 1;
H *= 2;
// Add this nucleotide's contribution to H
if (bin_h) H += 1;
break;
}
case CODON_H1 : {
// H codon found
nb_h++;
// Convert Gray code to "standard" binary code
bin_h ^= true; // as bin_m was initialized to false, the XOR will have no effect on the high weight bit
// A lower-than-the-previous-lowest weight bit was found, make a left bitwise shift
//~ H <<= 1;
H *= 2;
// Add this nucleotide's contribution to H
if (bin_h) H += 1;
break;
}
}
}
/// End of Black Magic
protein->protein_length = nb_codon;
// ----------------------------------------------------------------------------------
// 2) Normalize M, W and H values in [0;1] according to number of codons of each kind
// ----------------------------------------------------------------------------------
protein->m = nb_m != 0 ? M / (pow(2, nb_m) - 1) : 0.5;
protein->w = nb_w != 0 ? W / (pow(2, nb_w) - 1) : 0.0;
protein->h = nb_h != 0 ? H / (pow(2, nb_h) - 1) : 0.5;
// ------------------------------------------------------------------------------------
// 3) Normalize M, W and H values according to the allowed ranges (defined in macros.h)
// ------------------------------------------------------------------------------------
// x_min <= M <= x_max
// w_min <= W <= w_max
// h_min <= H <= h_max
protein->m = (X_MAX - X_MIN) * protein->m + X_MIN;
protein->w = (W_MAX - W_MIN) * protein->w + W_MIN;
protein->h = (H_MAX - H_MIN) * protein->h + H_MIN;
if (nb_m == 0 || nb_w == 0 || nb_h == 0 ||
protein->w == 0.0 ||
protein->h == 0.0) {
protein->is_functional = false;
} else {
protein->is_functional = true;
}
}
}
std::map<int, Protein *> lookup;
for (int protein_idx = 0; protein_idx < protein_count_; protein_idx++) {
auto* protein = proteins[protein_idx];
if (protein->is_init_) {
if (lookup.find(protein->protein_start) == lookup.end()) {
lookup[protein->protein_start] = protein;
} else {
lookup[protein->protein_start]->e += protein->e;
protein->is_init_ = false;
}
}
}
}
void Organism::compute_phenotype() {
double activ_phenotype[FUZZY_SAMPLING]{};
double inhib_phenotype[FUZZY_SAMPLING]{};
for (int protein_idx = 0; protein_idx < protein_count_; protein_idx++) {
const auto* protein = proteins[protein_idx];
if (protein->is_init_ && protein->is_functional) {
// Compute triangle points' coordinates
double x0 = protein->m - protein->w;
double x1 = protein->m;
double x2 = protein->m + protein->w;
// Interface between continuous world (up) and discrete world (down)
int ix0 = (int) (x0 * FUZZY_SAMPLING);
int ix1 = (int) (x1 * FUZZY_SAMPLING);
int ix2 = (int) (x2 * FUZZY_SAMPLING);
// active contribution is positive and inhib is negative
double height = protein->h * protein->e;
auto* local_phenotype = protein->h > 0 ? activ_phenotype : inhib_phenotype;
// Compute the first equation of the triangle
double slope = height / (double)(ix1 - ix0);
double y_intercept = -(double)ix0 * slope;
// Updating value between x0 and x1
for (int i = ix0; i < ix1; i++) {
if(i >= 0) {
local_phenotype[i] += slope * (double)i + y_intercept;
}
}
// Compute the second equation of the triangle
slope = height / (double)(ix1 - ix2);
y_intercept = -(double)ix2 * slope;
// Updating value between x1 and x2
for (int i = ix1; i < ix2; i++) {
if(i < FUZZY_SAMPLING) {
local_phenotype[i] += slope * (double)i + y_intercept;
}
}
}
}
for (int fuzzy_idx = 0; fuzzy_idx < FUZZY_SAMPLING; fuzzy_idx++) {
if (activ_phenotype[fuzzy_idx] > 1)
activ_phenotype[fuzzy_idx] = 1;
if (inhib_phenotype[fuzzy_idx] < -1)
inhib_phenotype[fuzzy_idx] = -1;
}
for (int fuzzy_idx = 0; fuzzy_idx < FUZZY_SAMPLING; fuzzy_idx++) {
phenotype[fuzzy_idx] = activ_phenotype[fuzzy_idx] + inhib_phenotype[fuzzy_idx];
if (phenotype[fuzzy_idx] < 0)
phenotype[fuzzy_idx] = 0;
if (phenotype[fuzzy_idx] > 1)
phenotype[fuzzy_idx] = 1;
}
}
void Organism::compute_fitness(const double *target) {
metaerror = 0.0;
for (int fuzzy_idx = 0; fuzzy_idx < FUZZY_SAMPLING; fuzzy_idx++) {
delta[fuzzy_idx] = fabs(phenotype[fuzzy_idx] - target[fuzzy_idx]);
delta[fuzzy_idx] /= (double) FUZZY_SAMPLING;
metaerror += delta[fuzzy_idx];
}
fitness = exp(-SELECTION_PRESSURE * ((double) metaerror));
}
/**
* Switch the DNA base-pair at a given position
*
* @param pos : the position where to switch the base-pair
* @return
*/
bool Organism::do_switch(int pos) {
dna_->do_switch(pos);
// Remove promoters containing the switched base
remove_promoters_around(pos, mod(pos + 1, dna_->length_));
// Look for potential new promoters containing the switched base
if (dna_->length_ >= PROM_SIZE)
look_for_new_promoters_around(pos, mod(pos + 1, dna_->length_));
return true;
}
void Organism::remove_promoters_around(int32_t pos) {
if (dna_->length_ >= PROM_SIZE) {
remove_promoters_starting_between(mod(pos - PROM_SIZE + 1, dna_->length_),
pos);
} else {
remove_all_promoters();
}
}
void Organism::remove_promoters_around(int32_t pos_1, int32_t pos_2) {
if (mod(pos_1 - pos_2, dna_->length_) >= PROM_SIZE) {
remove_promoters_starting_between(mod(pos_1 - PROM_SIZE + 1, dna_->length_),
pos_2);
} else {
remove_all_promoters();
}
}
void Organism::look_for_new_promoters_around(int32_t pos_1, int32_t pos_2) {
if (dna_->length_ >= PROM_SIZE) {
look_for_new_promoters_starting_between(mod(pos_1 - PROM_SIZE + 1, dna_->length_),
pos_2);
}
}
void Organism::look_for_new_promoters_around(int32_t pos) {
if (dna_->length_ >= PROM_SIZE) {
look_for_new_promoters_starting_between(mod(pos - PROM_SIZE + 1, dna_->length_),
pos);
}
}
void Organism::remove_all_promoters() {
promoters_.clear();
}
/** REMOVE **/
void Organism::remove_promoters_starting_between(int32_t pos_1, int32_t pos_2) {
if (pos_1 > pos_2) {
remove_promoters_starting_after(pos_1);
remove_promoters_starting_before(pos_2);
} else {
// suppression is in [pos1, pos_2[, pos_2 is excluded
promoters_.erase(promoters_.lower_bound(pos_1), promoters_.upper_bound(pos_2 - 1));
}
}
void Organism::remove_promoters_starting_after(int32_t pos) {
promoters_.erase(promoters_.lower_bound(pos), promoters_.end());
}
void Organism::remove_promoters_starting_before(int32_t pos) {
// suppression is in [0, pos[, pos is excluded
promoters_.erase(promoters_.begin(), promoters_.upper_bound(pos - 1));
}
void Organism::add_new_promoter(int32_t position, int8_t error) {
// TODO: Insertion should not always occur, especially if promoter become better or worse ?
// Promoters are deleted anyway if victim of mutation. the IF stays unnecessary
if (promoters_.find(position) == promoters_.end())
promoters_[position] = error;
}
void Organism::look_for_new_promoters_starting_between(int32_t pos_1, int32_t pos_2) {
// When pos_1 > pos_2, we will perform the search in 2 steps.
// As positions 0 and dna_->dna_->length_ are equivalent, it's preferable to
// keep 0 for pos_1 and dna_->dna_->length_ for pos_2.
if (pos_1 >= pos_2) {
look_for_new_promoters_starting_after(pos_1);
look_for_new_promoters_starting_before(pos_2);
return;
}
// Hamming distance of the sequence from the promoter consensus
for (int32_t i = pos_1; i < pos_2; i++) {
int8_t dist = dna_->promoter_at(i);
if (dist <= PROM_MAX_DIFF) { // dist takes the hamming distance of the sequence from the consensus
add_new_promoter(i, dist);
}
}
}
void Organism::look_for_new_promoters_starting_after(int32_t pos) {
for (int32_t i = pos; i < dna_->length_; i++) {
int dist = dna_->promoter_at(i);
if (dist <= 4) { // dist takes the hamming distance of the sequence from the consensus
add_new_promoter(i, dist);
}
}
}
void Organism::look_for_new_promoters_starting_before(int32_t pos) {
// Hamming distance of the sequence from the promoter consensus
for (int32_t i = 0; i < pos; i++) {
int dist = dna_->promoter_at(i);
if (dist <= 4) { // dist takes the hamming distance of the sequence from the consensus
add_new_promoter(i, dist);
}
}
}
// Printings
void Organism::print_info() {
printf("Fitness: %1.10e\n", fitness);
for (int i = 0; i < protein_count_; i++) {
const auto& prot = proteins[i];
printf("%d: %d %f %f %f %f\n", prot->protein_start, prot->is_functional,
prot->e, prot->w, prot->m, prot->h);
}
printf("\nnumber of proteins: %d\n", protein_count_);
for (int i = 0; i < FUZZY_SAMPLING; ++i) {
if (phenotype[i] == 0.0){
printf("0|");
} else {
printf("%f|", phenotype[i]);
}
}
printf("\n");
}