-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathmain.py
154 lines (127 loc) · 5.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import os
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
import random
from torch.utils.data import DataLoader
import setproctitle
import dataset
from model import BGCN, BGCN_Info
from utils import check_overfitting, early_stop, logger
from train import train
from metric import Recall, NDCG, MRR
from config import CONFIG
from test import test
import loss
from itertools import product
import time
from tensorboardX import SummaryWriter
def main():
# set env
setproctitle.setproctitle(f"train{CONFIG['name']}")
os.environ["CUDA_VISIBLE_DEVICES"] = CONFIG['gpu_id']
device = torch.device('cuda')
# fix seed
seed = 123
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
# load data
bundle_train_data, bundle_test_data, item_data, assist_data = \
dataset.get_dataset(CONFIG['path'], CONFIG['dataset_name'], task=CONFIG['task'])
train_loader = DataLoader(bundle_train_data, 2048, True,
num_workers=8, pin_memory=True)
test_loader = DataLoader(bundle_test_data, 4096, False,
num_workers=16, pin_memory=True)
# pretrain
if 'pretrain' in CONFIG:
pretrain = torch.load(CONFIG['pretrain'], map_location='cpu')
print('load pretrain')
# graph
ub_graph = bundle_train_data.ground_truth_u_b
ui_graph = item_data.ground_truth_u_i
bi_graph = assist_data.ground_truth_b_i
# metric
metrics = [Recall(20), NDCG(20), Recall(40), NDCG(40), Recall(80), NDCG(80)]
TARGET = 'Recall@20'
# loss
loss_func = loss.BPRLoss('mean')
# log
log = logger.Logger(os.path.join(
CONFIG['log'], CONFIG['dataset_name'],
f"{CONFIG['model']}_{CONFIG['task']}", ''), 'best', checkpoint_target=TARGET)
theta = 0.6
time_path = time.strftime("%y%m%d-%H%M%S", time.localtime(time.time()))
for lr, decay, message_dropout, node_dropout \
in product(CONFIG['lrs'], CONFIG['decays'], CONFIG['message_dropouts'], CONFIG['node_dropouts']):
visual_path = os.path.join(CONFIG['visual'],
CONFIG['dataset_name'],
f"{CONFIG['model']}_{CONFIG['task']}",
f"{time_path}@{CONFIG['note']}",
f"lr{lr}_decay{decay}_medr{message_dropout}_nodr{node_dropout}")
# model
if CONFIG['model'] == 'BGCN':
graph = [ub_graph, ui_graph, bi_graph]
info = BGCN_Info(64, decay, message_dropout, node_dropout, 2)
model = BGCN(info, assist_data, graph, device, pretrain=None).to(device)
assert model.__class__.__name__ == CONFIG['model']
# op
op = optim.Adam(model.parameters(), lr=lr)
# env
env = {'lr': lr,
'op': str(op).split(' ')[0], # Adam
'dataset': CONFIG['dataset_name'],
'model': CONFIG['model'],
'sample': CONFIG['sample'],
}
# continue training
if CONFIG['sample'] == 'hard' and 'conti_train' in CONFIG:
model.load_state_dict(torch.load(CONFIG['conti_train']))
print('load model and continue training')
retry = CONFIG['retry'] # =1
while retry >= 0:
# log
log.update_modelinfo(info, env, metrics)
try:
# train & test
early = CONFIG['early']
train_writer = SummaryWriter(log_dir=visual_path, comment='train')
test_writer = SummaryWriter(log_dir=visual_path, comment='test')
for epoch in range(CONFIG['epochs']):
# train
trainloss = train(model, epoch+1, train_loader, op, device, CONFIG, loss_func)
train_writer.add_scalars('loss/single', {"loss": trainloss}, epoch)
# test
if epoch % CONFIG['test_interval'] == 0:
output_metrics = test(model, test_loader, device, CONFIG, metrics)
for metric in output_metrics:
test_writer.add_scalars('metric/all', {metric.get_title(): metric.metric}, epoch)
if metric==output_metrics[0]:
test_writer.add_scalars('metric/single', {metric.get_title(): metric.metric}, epoch)
# log
log.update_log(metrics, model)
# check overfitting
if epoch > 10:
if check_overfitting(log.metrics_log, TARGET, 1, show=False):
break
# early stop
early = early_stop(
log.metrics_log[TARGET], early, threshold=0)
if early <= 0:
break
train_writer.close()
test_writer.close()
log.close_log(TARGET)
retry = -1
except RuntimeError:
retry -= 1
log.close()
if __name__ == "__main__":
main()