-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathdgflow.py
175 lines (141 loc) · 5.13 KB
/
dgflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
"""
Pytorch implementation of Discriminator Gradient flow (DGflow).
"""
import os
import yaml
import glob
import torch
import argparse
import numpy as np
from tqdm.auto import tqdm
from datetime import datetime
from chainer import serializers
from evaluation import calc_FID, calc_inception_score
from util import load_model
from inception_score import Inception
def _refine_batch(z, D, G, C, config):
eta = config['eta']
f = config['f_div']
noise_factor = np.sqrt(config['gamma'])
exp_dir = config['exp_dir']
def save_images(z, pth):
pth = os.path.join(exp_dir, 'samples', pth)
all_imgs = G(z, resize=False).data.cpu().numpy()
if os.path.exists(pth):
imgs = np.load(pth)
all_imgs = np.vstack([imgs, all_imgs])
np.save(pth, all_imgs)
def _velocity(z):
z_t = z.clone()
z_t.requires_grad_(True)
if z_t.grad is not None:
z_t.grad.zero_()
img_t = G(z_t)
d_score = D(img_t)
if C:
d_score = d_score + C(img_t)
if f == 'KL':
s = torch.ones_like(d_score.detach())
elif f == 'logD':
s = 1 / (1 + d_score.detach().exp())
elif f == 'JS':
s = 1 / (1 + 1 / d_score.detach().exp())
else:
raise ValueError()
s.expand_as(z_t)
d_score.backward(torch.ones_like(d_score).to(z.device))
grad = z_t.grad
return s.data * grad.data
pth = 'base.npy'
save_images(z, pth)
for t in tqdm(range(1, config['steps'] + 1), leave=False):
v = _velocity(z)
z = z.data + eta * v +\
np.sqrt(2*eta) * noise_factor * torch.randn_like(z)
if t % config['save_interval'] == 0:
pth = f'dgflow-step{t}.npy'
save_images(z, pth)
def refine_batch(D, G, C, config):
latent_dim = config['z_dim']
n = config['batch_size']
noise = torch.randn((n, latent_dim), device='cuda:0')
_refine_batch(noise, D, G, C, config)
def stabilize_sn(tD, im_size=32, iters=5000):
pbar = tqdm(range(iters))
for i in pbar:
x = torch.rand(10, 3, im_size, im_size).cuda()
_ = tD(x)
def evaluate_samples(exp_dir, samples_name, evmodel, eval_file_prefix):
pth = os.path.join(exp_dir, 'samples', samples_name)
samples = np.load(pth)
samples = np.asarray(
np.clip(samples * 127.5 + 127.5, 0.0, 255.0), dtype=np.float32)
fid = calc_FID(samples, evmodel, data=eval_file_prefix)
is_mean, is_std = calc_inception_score(samples, evmodel)
return fid, (is_mean, is_std)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--config_path', type=str, required=True, help='path to config file')
args = parser.parse_args()
with open(args.config_path, 'r') as fp:
config = yaml.full_load(fp)
# Setup experiment directory
timestamp = datetime.now().strftime("%Y_%m_%d_%H%M%S")
exp_dir = os.path.join(
config['exp_root'], 'dgflow_' + timestamp)
os.makedirs(os.path.join(exp_dir, 'samples'))
config['exp_dir'] = exp_dir
# Load models from checkpoints
tG = load_model('gen', config['gen_type'], config['gen_path'], config)
tD = load_model('disc', config['disc_type'], config['disc_path'], config)
tC = load_model('corr', config['corr_type'], config['corr_path'], config)
tD, tG = tD.cuda(), tG.cuda()
if tC:
tC = tC.cuda()
# Thermalize spectral norm in the discriminator
print('[i] Thermalizing spectral norm.')
stabilize_sn(tD, im_size=config['image_size'])
# Refine samples
print('[i] Running DGflow.')
for k in tqdm(range(0, config['num_imgs'], config['batch_size'])):
refine_batch(tD, tG, tC, config)
# Free up GPU memory
del tG
del tD
torch.cuda.empty_cache()
# Evaluate samples
print('[i] Running evaluation.')
evmodel = Inception()
serializers.load_hdf5('metric/inception_score.model', evmodel)
evmodel.to_gpu()
results = {'config': config,
'FID': dict(),
'IS': dict()}
fid, iscore = evaluate_samples(
config['exp_dir'],
'base.npy',
evmodel,
config['eval_file_prefix'])
results['FID']['Base'] = fid.item()
results['IS']['Base'] = iscore
for i in tqdm(range(config['save_interval'],
config['steps'] + 1,
config['save_interval'])):
fid, iscore = evaluate_samples(
config['exp_dir'],
f'dgflow-step{i}.npy',
evmodel,
config['eval_file_prefix'])
results['FID'][f'Step-{i}'] = fid.item()
results['IS'][f'Step-{i}'] = iscore
# Cleanup generated files
if not config['keep_samples']:
npy_files = glob.glob(os.path.join(exp_dir, 'samples', '*.npy'))
for f in npy_files:
os.remove(f)
# Save results
print('[i] Saving results.')
results_file = os.path.join(exp_dir, 'results.yml')
with open(results_file, 'w') as fp:
yaml.dump(results, fp, sort_keys=False)