-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathanalyse_data.py
205 lines (182 loc) · 9.65 KB
/
analyse_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
import pandas as pd
import os
import glob
from helpers import load_pk_file, save_pk_file, write_csv_file, merge_list_of_lists,create_folder_path
from tqdm import tqdm
tqdm.pandas()
from helpers import load_pk_file, merge_list_of_lists, create_folder_path
import matplotlib.pyplot as plt
import numpy as np
from collections import Counter
def get_most_freq(column, n):
"""
Get most n frequent items in a column, calculate the frequency contribution of each element
column: name of the column to be plotted
"""
#count the frequency of each item in a column
count = Counter()
column.apply(lambda x: count.update(Counter(x)))
#calculate the percentage of occurance over the total number of document
percentage = [( i, count[i]/len(column)*100.0 ) for i in count]
df = pd.DataFrame(percentage, columns=['item', 'percentage'])
most_freq = df.sort_values(by="percentage", ascending=False).head(n)
return most_freq
def cal_pct(val, list_val):
pct = int(val/100.*np.sum(list_val))
return "{:.1f}%".format(pct)
class Plot_data:
def __init__(self):
pass
def plot_num_feat(self, column, out_folder, group_by='truthClass'):
truthClass = list(self.truthClass.unique())
group = self.groupby([column, group_by]).size().unstack()
for i in truthClass:
group["pct_"+i] = group[i].map(lambda x: x/group[i].sum())
del group[i]
title = f"Plotting the {column} in clickbait and non-clickbait"
plot = group.plot(kind = "bar",figsize=[18,10], title = title, colormap ='Paired')
save_file = f'{out_folder}/plot_{column}.pdf'
plot.figure.savefig(save_file)
plt.close()
return save_file
def plot_check_feat(self, column,out_folder, group_by = "truthClass"):
"""
Plotting contribution
"""
group = self.groupby([column,group_by]).size().unstack()
fig, axs = plt.subplots(1,2,figsize=(12, 6), subplot_kw=dict(aspect="equal"))
#fig.suptitle(f"Plotting the occurrence of {column} in clickbait and non-clickbait")
labels = group.axes[0].tolist()
explode = (0, 0.1)
for i, c in enumerate(list(group.columns)):
wedges, texts, autotexts = axs[i].pie(group[c],explode=explode, autopct=lambda val: cal_pct(val,group[c]),
colors= ['#003f5a','#de6600'], textprops=dict(color="w"))
axs[i].set_title(c,fontdict=dict(fontsize=14,fontweight='bold'), y = -0.1)
plt.setp(autotexts, size=14, weight="bold")
axs[1].legend(wedges, labels,loc='upper right')
save_file = f'{out_folder}/plot_{column}.pdf'
fig.savefig(save_file)
plt.close()
return save_file
def plot_freq_feat(self, column, out_folder, n=20):
""""
Plotting frequency of occurrence of a feature.
df: dataframe
column: name of the column to be plotted
folder: name of the folder to which the result figure is saved
Return a horizontal bar chart
"""
#calculate frequency of occurrence of a feature with each category
truthClass = list(self.truthClass.unique())
freq_list = []
for label in truthClass:
most_freq = get_most_freq(self[self["truthClass"] == label][column], n)
freq_list.append(most_freq)
#merge the results of the calculation to compare. Missing values will be filled with Nah
freq_df = pd.merge(freq_list[0], freq_list[1], on='item', how='outer',suffixes=('_CB','_NO'))
#Plot the merged result
fig = plt.figure(figsize=(24,12))
y = np.arange(len(freq_df.index))
ax = plt.subplot(111)
ax.barh(y, freq_df["percentage_CB"], height=0.3, color='#003f5a', align='center')
ax.barh(y-0.3, freq_df["percentage_NO"],height=0.3, color='#de6600', align='center')
ax.legend((truthClass))
plt.yticks(y, freq_df["item"], fontsize=12)
ax.invert_yaxis()
ax.set_xlabel('Contribution', fontsize=15)
plt.title(f"Plotting the frequency of occurrence of {column} in clickbait and non-clickbait", fontsize=15)
#plt.show()
save_file = f"{out_folder}/plot_{column}.pdf"
fig.savefig(save_file,orientation='landscape')
plt.close()
return save_file
def analyse_data(in_folder, out_folder):
fig_folder = create_folder_path(out_folder)
for file_name in glob.glob(os.path.join(in_folder, '*.pk')):
print(f"Analysing {file_name}")
df = load_pk_file(file_name)
save_folder = fig_folder + "/" + os.path.basename(file_name).replace(".pk","")
create_folder_path(save_folder)
#plotting the number of tokens of each text
Plot_data.plot_num_feat(df,"num_token",save_folder)
#Plotting average token lenght
Plot_data.plot_num_feat(df,"avr_token_len",save_folder)
#Plotting the use of punct
Plot_data.plot_freq_feat(df,"punct",save_folder)
#plotting number of contraction
Plot_data.plot_num_feat(df,"num_contr",save_folder)
#plotting the frequency of each part-of-speech
Plot_data.plot_freq_feat(df,"pos",save_folder)
#plotting the frequency of each part-of-speech
Plot_data.plot_freq_feat(df,"tag",save_folder,40)
#plotting most frequent pos_ngram
Plot_data.plot_freq_feat(df,"pos_trigram",save_folder,30)
Plot_data.plot_freq_feat(df,"pos_fourgram",save_folder,30)
#plotting the longest dependecy path of each text
Plot_data.plot_num_feat(df, "max_dep_path",save_folder)
#plotting the frequency of each dependecy
#Plot_data.plot_freq_feat(df,"dep",save_folder,40)
#Plot_data.plot_freq_feat(df,"dep_bigram",save_folder,30)
#Plot_data.plot_freq_feat(df,"dep_trigram",save_folder,30)
#plotting most frequent subject
Plot_data.plot_freq_feat(df,"arg",save_folder)
#plotting most frequent root
Plot_data.plot_freq_feat(df,"root",save_folder)
#plotting most frequent determiner
Plot_data.plot_freq_feat(df,"det",save_folder)
#plotting most frequent adverb
Plot_data.plot_freq_feat(df,"advmod",save_folder)
#plotting the frequency of verbs
Plot_data.plot_freq_feat(df,"verb",save_folder)
#plotting the frequency of noun
Plot_data.plot_freq_feat(df,"nn",save_folder)
#plotting the frequency of adj
Plot_data.plot_freq_feat(df,"adj",save_folder)
#plotting most frequent pronoun
Plot_data.plot_freq_feat(df,"pron",save_folder)
#plotting the frequency of adv
Plot_data.plot_freq_feat(df,"adv",save_folder)
#plotting the number of named entities
Plot_data.plot_freq_feat(df,"ent",save_folder)
df["num_ent"] = df["ent_label"].progress_map(lambda x: len(x))
Plot_data.plot_num_feat(df,"num_ent",save_folder)
#plotting the most frequent types of named entity
Plot_data.plot_freq_feat(df,"ent_label",save_folder)
#plotting the frequency of different type of chuck
Plot_data.plot_freq_feat(df,"chunk_dep",save_folder)
#plotting sentiment
Plot_data.plot_num_feat(df,"senti_score",save_folder)
#plotting texts that in the form of a question
Plot_data.plot_check_feat(df,"use_question",save_folder)
#plotting texts that use passive voice
Plot_data.plot_check_feat(df,"use_passive",save_folder)
#plotting texts that use supperlative
Plot_data.plot_check_feat(df,"use_supper",save_folder)
#plotting the use of if statement
Plot_data.plot_check_feat(df,"use_if",save_folder)
#plotting texts that is listicle
Plot_data.plot_check_feat(df,"use_list",save_folder)
#plotting modal verbs
Plot_data.plot_check_feat(df,"use_modal",save_folder)
if "targetParagraphs" in df.columns:
#plotting the number of tokens of each text
Plot_data.plot_num_feat(df,"cont_num_token",save_folder)
#Plotting average token lenght
Plot_data.plot_num_feat(df,"cont_avr_token_len",save_folder)
#plotting the number of sentences in content
Plot_data.plot_num_feat(df,"cont_num_sent",save_folder)
#Plotting average sentence lenght
Plot_data.plot_num_feat(df,"cont_avr_sent_len",save_folder)
#plotting the most frequent named entities
Plot_data.plot_freq_feat(df,"cont_ent",save_folder)
#plotting sentiment
Plot_data.plot_num_feat(df,"cont_senti_score",save_folder)
#Plotting percentage of sentences in content that is similar to headlines
df["sim_pct"] = df["sim_pct"].progress_map(lambda x: "NA" if x=="NA" else ("<33%" if x<33 else ("33-66%" if 33<=x<66 else ">66%")))
Plot_data.plot_num_feat(df,"sim_pct",save_folder)
#Plotting the average similarity scores between a headline and its content
df["avr_sim_score"] = df["avr_sim_score"].progress_map(lambda x: "NA" if x == "NA" else ("(0-0.05]" if x<=0.05 else ("(0.05-0.1]" if 0.05<x<=0.1 else ("(0.1-0.2]" if 0.1<x<=0.2
else ("(0.2-0.3]" if 0.2<x<=0.3 else ("(0.3-0.4]" if 0.3<x<=0.4 else ("(0.4-0.5]" if 0.4<x<=0.5 else ">0.5")))))))
Plot_data.plot_num_feat(df,"avr_sim_score",save_folder)
if __name__ == "__main__":
analyse_data("Processed_data", "Figures")