-
Notifications
You must be signed in to change notification settings - Fork 452
/
open.go
1289 lines (1185 loc) · 40.7 KB
/
open.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
// Copyright 2012 The LevelDB-Go and Pebble Authors. All rights reserved. Use
// of this source code is governed by a BSD-style license that can be found in
// the LICENSE file.
package pebble
import (
"bytes"
"context"
"encoding/binary"
"fmt"
"io"
"math"
"os"
"slices"
"sync/atomic"
"time"
"github.com/cockroachdb/crlib/crtime"
"github.com/cockroachdb/errors"
"github.com/cockroachdb/errors/oserror"
"github.com/cockroachdb/pebble/batchrepr"
"github.com/cockroachdb/pebble/internal/arenaskl"
"github.com/cockroachdb/pebble/internal/base"
"github.com/cockroachdb/pebble/internal/cache"
"github.com/cockroachdb/pebble/internal/constants"
"github.com/cockroachdb/pebble/internal/invariants"
"github.com/cockroachdb/pebble/internal/manifest"
"github.com/cockroachdb/pebble/internal/manual"
"github.com/cockroachdb/pebble/objstorage"
"github.com/cockroachdb/pebble/objstorage/objstorageprovider"
"github.com/cockroachdb/pebble/objstorage/remote"
"github.com/cockroachdb/pebble/record"
"github.com/cockroachdb/pebble/sstable"
"github.com/cockroachdb/pebble/vfs"
"github.com/cockroachdb/pebble/wal"
"github.com/prometheus/client_golang/prometheus"
)
const (
initialMemTableSize = 256 << 10 // 256 KB
// The max batch size is limited by the uint32 offsets stored in
// internal/batchskl.node, DeferredBatchOp, and flushableBatchEntry.
//
// We limit the size to MaxUint32 (just short of 4GB) so that the exclusive
// end of an allocation fits in uint32.
//
// On 32-bit systems, slices are naturally limited to MaxInt (just short of
// 2GB).
maxBatchSize = constants.MaxUint32OrInt
// The max memtable size is limited by the uint32 offsets stored in
// internal/arenaskl.node, DeferredBatchOp, and flushableBatchEntry.
//
// We limit the size to MaxUint32 (just short of 4GB) so that the exclusive
// end of an allocation fits in uint32.
//
// On 32-bit systems, slices are naturally limited to MaxInt (just short of
// 2GB).
maxMemTableSize = constants.MaxUint32OrInt
)
// TableCacheSize can be used to determine the table
// cache size for a single db, given the maximum open
// files which can be used by a table cache which is
// only used by a single db.
func TableCacheSize(maxOpenFiles int) int {
tableCacheSize := maxOpenFiles - numNonTableCacheFiles
if tableCacheSize < minTableCacheSize {
tableCacheSize = minTableCacheSize
}
return tableCacheSize
}
// Open opens a DB whose files live in the given directory.
func Open(dirname string, opts *Options) (db *DB, err error) {
// Make a copy of the options so that we don't mutate the passed in options.
opts = opts.Clone()
opts = opts.EnsureDefaults()
if err := opts.Validate(); err != nil {
return nil, err
}
if opts.LoggerAndTracer == nil {
opts.LoggerAndTracer = &base.LoggerWithNoopTracer{Logger: opts.Logger}
} else {
opts.Logger = opts.LoggerAndTracer
}
if invariants.Sometimes(5) {
assertComparer := base.MakeAssertComparer(*opts.Comparer)
opts.Comparer = &assertComparer
}
// In all error cases, we return db = nil; this is used by various
// deferred cleanups.
// Open the database and WAL directories first.
walDirname, dataDir, err := prepareAndOpenDirs(dirname, opts)
if err != nil {
return nil, errors.Wrapf(err, "error opening database at %q", dirname)
}
defer func() {
if db == nil {
dataDir.Close()
}
}()
// Lock the database directory.
var fileLock *Lock
if opts.Lock != nil {
// The caller already acquired the database lock. Ensure that the
// directory matches.
if err := opts.Lock.pathMatches(dirname); err != nil {
return nil, err
}
if err := opts.Lock.refForOpen(); err != nil {
return nil, err
}
fileLock = opts.Lock
} else {
fileLock, err = LockDirectory(dirname, opts.FS)
if err != nil {
return nil, err
}
}
defer func() {
if db == nil {
fileLock.Close()
}
}()
// List the directory contents. This also happens to include WAL log files, if
// they are in the same dir, but we will ignore those below. The provider is
// also given this list, but it ignores non sstable files.
ls, err := opts.FS.List(dirname)
if err != nil {
return nil, err
}
// Establish the format major version.
formatVersion, formatVersionMarker, err := lookupFormatMajorVersion(opts.FS, dirname, ls)
if err != nil {
return nil, err
}
defer func() {
if db == nil {
formatVersionMarker.Close()
}
}()
noFormatVersionMarker := formatVersion == FormatDefault
if noFormatVersionMarker {
// We will initialize the store at the minimum possible format, then upgrade
// the format to the desired one. This helps test the format upgrade code.
formatVersion = FormatMinSupported
if opts.Experimental.CreateOnShared != remote.CreateOnSharedNone {
formatVersion = FormatMinForSharedObjects
}
// There is no format version marker file. There are three cases:
// - we are trying to open an existing store that was created at
// FormatMostCompatible (the only one without a version marker file)
// - we are creating a new store;
// - we are retrying a failed creation.
//
// To error in the first case, we set ErrorIfNotPristine.
opts.ErrorIfNotPristine = true
defer func() {
if err != nil && errors.Is(err, ErrDBNotPristine) {
// We must be trying to open an existing store at FormatMostCompatible.
// Correct the error in this case -we
err = errors.Newf(
"pebble: database %q written in format major version 1 which is no longer supported",
dirname)
}
}()
} else {
if opts.Experimental.CreateOnShared != remote.CreateOnSharedNone && formatVersion < FormatMinForSharedObjects {
return nil, errors.Newf(
"pebble: database %q configured with shared objects but written in too old format major version %d",
dirname, formatVersion)
}
}
// Find the currently active manifest, if there is one.
manifestMarker, manifestFileNum, manifestExists, err := findCurrentManifest(opts.FS, dirname, ls)
if err != nil {
return nil, errors.Wrapf(err, "pebble: database %q", dirname)
}
defer func() {
if db == nil {
manifestMarker.Close()
}
}()
// Atomic markers may leave behind obsolete files if there's a crash
// mid-update. Clean these up if we're not in read-only mode.
if !opts.ReadOnly {
if err := formatVersionMarker.RemoveObsolete(); err != nil {
return nil, err
}
if err := manifestMarker.RemoveObsolete(); err != nil {
return nil, err
}
}
if opts.Cache == nil {
opts.Cache = cache.New(cacheDefaultSize)
} else {
opts.Cache.Ref()
}
d := &DB{
cacheID: opts.Cache.NewID(),
dirname: dirname,
opts: opts,
cmp: opts.Comparer.Compare,
equal: opts.Comparer.Equal,
merge: opts.Merger.Merge,
split: opts.Comparer.Split,
abbreviatedKey: opts.Comparer.AbbreviatedKey,
largeBatchThreshold: (opts.MemTableSize - uint64(memTableEmptySize)) / 2,
fileLock: fileLock,
dataDir: dataDir,
closed: new(atomic.Value),
closedCh: make(chan struct{}),
}
d.mu.versions = &versionSet{}
d.diskAvailBytes.Store(math.MaxUint64)
defer func() {
// If an error or panic occurs during open, attempt to release the manually
// allocated memory resources. Note that rather than look for an error, we
// look for the return of a nil DB pointer.
if r := recover(); db == nil {
// If there's an unused, recycled memtable, we need to release its memory.
if obsoleteMemTable := d.memTableRecycle.Swap(nil); obsoleteMemTable != nil {
d.freeMemTable(obsoleteMemTable)
}
// Release our references to the Cache. Note that both the DB, and
// tableCache have a reference. When we release the reference to
// the tableCache, and if there are no other references to
// the tableCache, then the tableCache will also release its
// reference to the cache.
opts.Cache.Unref()
if d.tableCache != nil {
_ = d.tableCache.close()
}
for _, mem := range d.mu.mem.queue {
switch t := mem.flushable.(type) {
case *memTable:
manual.Free(manual.MemTable, t.arenaBuf)
t.arenaBuf = nil
}
}
if d.cleanupManager != nil {
d.cleanupManager.Close()
}
if d.objProvider != nil {
d.objProvider.Close()
}
if r != nil {
panic(r)
}
}
}()
d.commit = newCommitPipeline(commitEnv{
logSeqNum: &d.mu.versions.logSeqNum,
visibleSeqNum: &d.mu.versions.visibleSeqNum,
apply: d.commitApply,
write: d.commitWrite,
})
d.mu.nextJobID = 1
d.mu.mem.nextSize = opts.MemTableSize
if d.mu.mem.nextSize > initialMemTableSize {
d.mu.mem.nextSize = initialMemTableSize
}
d.mu.compact.cond.L = &d.mu.Mutex
d.mu.compact.inProgress = make(map[*compaction]struct{})
d.mu.compact.noOngoingFlushStartTime = crtime.NowMono()
d.mu.snapshots.init()
// logSeqNum is the next sequence number that will be assigned.
// Start assigning sequence numbers from base.SeqNumStart to leave
// room for reserved sequence numbers (see comments around
// SeqNumStart).
d.mu.versions.logSeqNum.Store(base.SeqNumStart)
d.mu.formatVers.vers.Store(uint64(formatVersion))
d.mu.formatVers.marker = formatVersionMarker
d.timeNow = time.Now
d.openedAt = d.timeNow()
d.mu.Lock()
defer d.mu.Unlock()
jobID := d.newJobIDLocked()
providerSettings := objstorageprovider.Settings{
Logger: opts.Logger,
FS: opts.FS,
FSDirName: dirname,
FSDirInitialListing: ls,
FSCleaner: opts.Cleaner,
NoSyncOnClose: opts.NoSyncOnClose,
BytesPerSync: opts.BytesPerSync,
}
providerSettings.Local.ReadaheadConfig = opts.Local.ReadaheadConfig
providerSettings.Remote.StorageFactory = opts.Experimental.RemoteStorage
providerSettings.Remote.CreateOnShared = opts.Experimental.CreateOnShared
providerSettings.Remote.CreateOnSharedLocator = opts.Experimental.CreateOnSharedLocator
providerSettings.Remote.CacheSizeBytes = opts.Experimental.SecondaryCacheSizeBytes
d.objProvider, err = objstorageprovider.Open(providerSettings)
if err != nil {
return nil, err
}
if !manifestExists {
// DB does not exist.
if d.opts.ErrorIfNotExists || d.opts.ReadOnly {
return nil, errors.Wrapf(ErrDBDoesNotExist, "dirname=%q", dirname)
}
// Create the DB.
if err := d.mu.versions.create(
jobID, dirname, d.objProvider, opts, manifestMarker, d.FormatMajorVersion, &d.mu.Mutex); err != nil {
return nil, err
}
} else {
if opts.ErrorIfExists {
return nil, errors.Wrapf(ErrDBAlreadyExists, "dirname=%q", dirname)
}
// Load the version set.
if err := d.mu.versions.load(
dirname, d.objProvider, opts, manifestFileNum, manifestMarker, d.FormatMajorVersion, &d.mu.Mutex); err != nil {
return nil, err
}
if opts.ErrorIfNotPristine {
liveFileNums := make(map[base.DiskFileNum]struct{})
d.mu.versions.addLiveFileNums(liveFileNums)
if len(liveFileNums) != 0 {
return nil, errors.Wrapf(ErrDBNotPristine, "dirname=%q", dirname)
}
}
}
// In read-only mode, we replay directly into the mutable memtable but never
// flush it. We need to delay creation of the memtable until we know the
// sequence number of the first batch that will be inserted.
if !d.opts.ReadOnly {
var entry *flushableEntry
d.mu.mem.mutable, entry = d.newMemTable(0 /* logNum */, d.mu.versions.logSeqNum.Load(), 0 /* minSize */)
d.mu.mem.queue = append(d.mu.mem.queue, entry)
}
d.mu.log.metrics.fsyncLatency = prometheus.NewHistogram(prometheus.HistogramOpts{
Buckets: FsyncLatencyBuckets,
})
walOpts := wal.Options{
Primary: wal.Dir{FS: opts.FS, Dirname: walDirname},
Secondary: wal.Dir{},
MinUnflushedWALNum: wal.NumWAL(d.mu.versions.minUnflushedLogNum),
MaxNumRecyclableLogs: opts.MemTableStopWritesThreshold + 1,
NoSyncOnClose: opts.NoSyncOnClose,
BytesPerSync: opts.WALBytesPerSync,
PreallocateSize: d.walPreallocateSize,
MinSyncInterval: opts.WALMinSyncInterval,
FsyncLatency: d.mu.log.metrics.fsyncLatency,
QueueSemChan: d.commit.logSyncQSem,
Logger: opts.Logger,
EventListener: walEventListenerAdaptor{l: opts.EventListener},
}
if opts.WALFailover != nil {
walOpts.Secondary = opts.WALFailover.Secondary
walOpts.FailoverOptions = opts.WALFailover.FailoverOptions
walOpts.FailoverWriteAndSyncLatency = prometheus.NewHistogram(prometheus.HistogramOpts{
Buckets: FsyncLatencyBuckets,
})
}
walDirs := append(walOpts.Dirs(), opts.WALRecoveryDirs...)
wals, err := wal.Scan(walDirs...)
if err != nil {
return nil, err
}
walManager, err := wal.Init(walOpts, wals)
if err != nil {
return nil, err
}
defer func() {
if db == nil {
walManager.Close()
}
}()
d.mu.log.manager = walManager
d.cleanupManager = openCleanupManager(opts, d.objProvider, d.onObsoleteTableDelete, d.getDeletionPacerInfo)
if manifestExists && !opts.DisableConsistencyCheck {
curVersion := d.mu.versions.currentVersion()
if err := checkConsistency(curVersion, dirname, d.objProvider); err != nil {
return nil, err
}
}
tableCacheSize := TableCacheSize(opts.MaxOpenFiles)
d.tableCache = newTableCacheContainer(
opts.TableCache, d.cacheID, d.objProvider, d.opts, tableCacheSize,
&sstable.CategoryStatsCollector{})
d.newIters = d.tableCache.newIters
d.tableNewRangeKeyIter = tableNewRangeKeyIter(d.newIters)
d.mu.annotators.totalSize = d.makeFileSizeAnnotator(func(f *manifest.FileMetadata) bool {
return true
})
d.mu.annotators.remoteSize = d.makeFileSizeAnnotator(func(f *manifest.FileMetadata) bool {
meta, err := d.objProvider.Lookup(fileTypeTable, f.FileBacking.DiskFileNum)
if err != nil {
return false
}
return meta.IsRemote()
})
d.mu.annotators.externalSize = d.makeFileSizeAnnotator(func(f *manifest.FileMetadata) bool {
meta, err := d.objProvider.Lookup(fileTypeTable, f.FileBacking.DiskFileNum)
if err != nil {
return false
}
return meta.IsRemote() && meta.Remote.CleanupMethod == objstorage.SharedNoCleanup
})
var previousOptionsFileNum base.DiskFileNum
var previousOptionsFilename string
for _, filename := range ls {
ft, fn, ok := base.ParseFilename(opts.FS, filename)
if !ok {
continue
}
// Don't reuse any obsolete file numbers to avoid modifying an
// ingested sstable's original external file.
d.mu.versions.markFileNumUsed(fn)
switch ft {
case fileTypeLog:
// Ignore.
case fileTypeOptions:
if previousOptionsFileNum < fn {
previousOptionsFileNum = fn
previousOptionsFilename = filename
}
case fileTypeTemp, fileTypeOldTemp:
if !d.opts.ReadOnly {
// Some codepaths write to a temporary file and then
// rename it to its final location when complete. A
// temp file is leftover if a process exits before the
// rename. Remove it.
err := opts.FS.Remove(opts.FS.PathJoin(dirname, filename))
if err != nil {
return nil, err
}
}
}
}
if n := len(wals); n > 0 {
// Don't reuse any obsolete file numbers to avoid modifying an
// ingested sstable's original external file.
d.mu.versions.markFileNumUsed(base.DiskFileNum(wals[n-1].Num))
}
// Ratchet d.mu.versions.nextFileNum ahead of all known objects in the
// objProvider. This avoids FileNum collisions with obsolete sstables.
objects := d.objProvider.List()
for _, obj := range objects {
d.mu.versions.markFileNumUsed(obj.DiskFileNum)
}
// Validate the most-recent OPTIONS file, if there is one.
if previousOptionsFilename != "" {
path := opts.FS.PathJoin(dirname, previousOptionsFilename)
previousOptions, err := readOptionsFile(opts, path)
if err != nil {
return nil, err
}
if err := opts.CheckCompatibility(previousOptions); err != nil {
return nil, err
}
}
// Replay any newer log files than the ones named in the manifest.
var replayWALs wal.Logs
for i, w := range wals {
if base.DiskFileNum(w.Num) >= d.mu.versions.minUnflushedLogNum {
replayWALs = wals[i:]
break
}
}
var flushableIngests []*ingestedFlushable
for i, lf := range replayWALs {
// WALs other than the last one would have been closed cleanly.
//
// Note: we used to never require strict WAL tails when reading from older
// versions: RocksDB 6.2.1 and the version of Pebble included in CockroachDB
// 20.1 do not guarantee that closed WALs end cleanly. But the earliest
// compatible Pebble format is newer and guarantees a clean EOF.
strictWALTail := i < len(replayWALs)-1
fi, maxSeqNum, err := d.replayWAL(jobID, lf, strictWALTail)
if err != nil {
return nil, err
}
if len(fi) > 0 {
flushableIngests = append(flushableIngests, fi...)
}
if d.mu.versions.logSeqNum.Load() < maxSeqNum {
d.mu.versions.logSeqNum.Store(maxSeqNum)
}
}
if d.mu.mem.mutable == nil {
// Recreate the mutable memtable if replayWAL got rid of it.
var entry *flushableEntry
d.mu.mem.mutable, entry = d.newMemTable(d.mu.versions.getNextDiskFileNum(), d.mu.versions.logSeqNum.Load(), 0 /* minSize */)
d.mu.mem.queue = append(d.mu.mem.queue, entry)
}
d.mu.versions.visibleSeqNum.Store(d.mu.versions.logSeqNum.Load())
if !d.opts.ReadOnly {
d.maybeScheduleFlush()
for d.mu.compact.flushing {
d.mu.compact.cond.Wait()
}
// Create an empty .log file for the mutable memtable.
newLogNum := d.mu.versions.getNextDiskFileNum()
d.mu.log.writer, err = d.mu.log.manager.Create(wal.NumWAL(newLogNum), int(jobID))
if err != nil {
return nil, err
}
// This isn't strictly necessary as we don't use the log number for
// memtables being flushed, only for the next unflushed memtable.
d.mu.mem.queue[len(d.mu.mem.queue)-1].logNum = newLogNum
}
d.updateReadStateLocked(d.opts.DebugCheck)
if !d.opts.ReadOnly {
// If the Options specify a format major version higher than the
// loaded database's, upgrade it. If this is a new database, this
// code path also performs an initial upgrade from the starting
// implicit MinSupported version.
//
// We ratchet the version this far into Open so that migrations have a read
// state available. Note that this also results in creating/updating the
// format version marker file.
if opts.FormatMajorVersion > d.FormatMajorVersion() {
if err := d.ratchetFormatMajorVersionLocked(opts.FormatMajorVersion); err != nil {
return nil, err
}
} else if noFormatVersionMarker {
// We are creating a new store. Create the format version marker file.
if err := d.writeFormatVersionMarker(d.FormatMajorVersion()); err != nil {
return nil, err
}
}
// Write the current options to disk.
d.optionsFileNum = d.mu.versions.getNextDiskFileNum()
tmpPath := base.MakeFilepath(opts.FS, dirname, fileTypeTemp, d.optionsFileNum)
optionsPath := base.MakeFilepath(opts.FS, dirname, fileTypeOptions, d.optionsFileNum)
// Write them to a temporary file first, in case we crash before
// we're done. A corrupt options file prevents opening the
// database.
optionsFile, err := opts.FS.Create(tmpPath, vfs.WriteCategoryUnspecified)
if err != nil {
return nil, err
}
serializedOpts := []byte(opts.String())
if _, err := optionsFile.Write(serializedOpts); err != nil {
return nil, errors.CombineErrors(err, optionsFile.Close())
}
d.optionsFileSize = uint64(len(serializedOpts))
if err := optionsFile.Sync(); err != nil {
return nil, errors.CombineErrors(err, optionsFile.Close())
}
if err := optionsFile.Close(); err != nil {
return nil, err
}
// Atomically rename to the OPTIONS-XXXXXX path. This rename is
// guaranteed to be atomic because the destination path does not
// exist.
if err := opts.FS.Rename(tmpPath, optionsPath); err != nil {
return nil, err
}
if err := d.dataDir.Sync(); err != nil {
return nil, err
}
}
if !d.opts.ReadOnly {
// Get a fresh list of files, in case some of the earlier flushes/compactions
// have deleted some files.
ls, err := opts.FS.List(dirname)
if err != nil {
return nil, err
}
d.scanObsoleteFiles(ls, flushableIngests)
d.deleteObsoleteFiles(jobID)
}
// Else, nothing is obsolete.
d.mu.tableStats.cond.L = &d.mu.Mutex
d.mu.tableValidation.cond.L = &d.mu.Mutex
if !d.opts.ReadOnly {
d.maybeCollectTableStatsLocked()
}
d.calculateDiskAvailableBytes()
d.maybeScheduleFlush()
d.maybeScheduleCompaction()
// Note: this is a no-op if invariants are disabled or race is enabled.
//
// Setting a finalizer on *DB causes *DB to never be reclaimed and the
// finalizer to never be run. The problem is due to this limitation of
// finalizers mention in the SetFinalizer docs:
//
// If a cyclic structure includes a block with a finalizer, that cycle is
// not guaranteed to be garbage collected and the finalizer is not
// guaranteed to run, because there is no ordering that respects the
// dependencies.
//
// DB has cycles with several of its internal structures: readState,
// newIters, tableCache, versions, etc. Each of this individually cause a
// cycle and prevent the finalizer from being run. But we can workaround this
// finializer limitation by setting a finalizer on another object that is
// tied to the lifetime of DB: the DB.closed atomic.Value.
dPtr := fmt.Sprintf("%p", d)
invariants.SetFinalizer(d.closed, func(obj interface{}) {
v := obj.(*atomic.Value)
if err := v.Load(); err == nil {
fmt.Fprintf(os.Stderr, "%s: unreferenced DB not closed\n", dPtr)
os.Exit(1)
}
})
return d, nil
}
// prepareAndOpenDirs opens the directories for the store (and creates them if
// necessary).
//
// Returns an error if ReadOnly is set and the directories don't exist.
func prepareAndOpenDirs(
dirname string, opts *Options,
) (walDirname string, dataDir vfs.File, err error) {
walDirname = opts.WALDir
if opts.WALDir == "" {
walDirname = dirname
}
// Create directories if needed.
if !opts.ReadOnly {
f, err := mkdirAllAndSyncParents(opts.FS, dirname)
if err != nil {
return "", nil, err
}
f.Close()
if walDirname != dirname {
f, err := mkdirAllAndSyncParents(opts.FS, walDirname)
if err != nil {
return "", nil, err
}
f.Close()
}
if opts.WALFailover != nil {
secondary := opts.WALFailover.Secondary
f, err := mkdirAllAndSyncParents(secondary.FS, secondary.Dirname)
if err != nil {
return "", nil, err
}
f.Close()
}
}
dataDir, err = opts.FS.OpenDir(dirname)
if err != nil {
if opts.ReadOnly && oserror.IsNotExist(err) {
return "", nil, errors.Errorf("pebble: database %q does not exist", dirname)
}
return "", nil, err
}
if opts.ReadOnly && walDirname != dirname {
// Check that the wal dir exists.
walDir, err := opts.FS.OpenDir(walDirname)
if err != nil {
dataDir.Close()
return "", nil, err
}
walDir.Close()
}
return walDirname, dataDir, nil
}
// GetVersion returns the engine version string from the latest options
// file present in dir. Used to check what Pebble or RocksDB version was last
// used to write to the database stored in this directory. An empty string is
// returned if no valid OPTIONS file with a version key was found.
func GetVersion(dir string, fs vfs.FS) (string, error) {
ls, err := fs.List(dir)
if err != nil {
return "", err
}
var version string
lastOptionsSeen := base.DiskFileNum(0)
for _, filename := range ls {
ft, fn, ok := base.ParseFilename(fs, filename)
if !ok {
continue
}
switch ft {
case fileTypeOptions:
// If this file has a higher number than the last options file
// processed, reset version. This is because rocksdb often
// writes multiple options files without deleting previous ones.
// Otherwise, skip parsing this options file.
if fn > lastOptionsSeen {
version = ""
lastOptionsSeen = fn
} else {
continue
}
f, err := fs.Open(fs.PathJoin(dir, filename))
if err != nil {
return "", err
}
data, err := io.ReadAll(f)
f.Close()
if err != nil {
return "", err
}
err = parseOptions(string(data), parseOptionsFuncs{
visitKeyValue: func(i, j int, section, key, value string) error {
switch {
case section == "Version":
switch key {
case "pebble_version":
version = value
case "rocksdb_version":
version = fmt.Sprintf("rocksdb v%s", value)
}
}
return nil
},
})
if err != nil {
return "", err
}
}
}
return version, nil
}
func (d *DB) replayIngestedFlushable(
b *Batch, logNum base.DiskFileNum,
) (entry *flushableEntry, err error) {
br := b.Reader()
seqNum := b.SeqNum()
fileNums := make([]base.DiskFileNum, 0, b.Count())
var exciseSpan KeyRange
addFileNum := func(encodedFileNum []byte) {
fileNum, n := binary.Uvarint(encodedFileNum)
if n <= 0 {
panic("pebble: ingest sstable file num is invalid")
}
fileNums = append(fileNums, base.DiskFileNum(fileNum))
}
for i := 0; i < int(b.Count()); i++ {
kind, key, val, ok, err := br.Next()
if err != nil {
return nil, err
}
if kind != InternalKeyKindIngestSST && kind != InternalKeyKindExcise {
panic("pebble: invalid batch key kind")
}
if !ok {
panic("pebble: invalid batch count")
}
if kind == base.InternalKeyKindExcise {
if exciseSpan.Valid() {
panic("pebble: multiple excise spans in a single batch")
}
exciseSpan.Start = slices.Clone(key)
exciseSpan.End = slices.Clone(val)
continue
}
addFileNum(key)
}
if _, _, _, ok, err := br.Next(); err != nil {
return nil, err
} else if ok {
panic("pebble: invalid number of entries in batch")
}
meta := make([]*fileMetadata, len(fileNums))
for i, n := range fileNums {
readable, err := d.objProvider.OpenForReading(context.TODO(), fileTypeTable, n, objstorage.OpenOptions{MustExist: true})
if err != nil {
return nil, errors.Wrap(err, "pebble: error when opening flushable ingest files")
}
// NB: ingestLoad1 will close readable.
meta[i], err = ingestLoad1(context.TODO(), d.opts, d.FormatMajorVersion(), readable, d.cacheID, base.PhysicalTableFileNum(n))
if err != nil {
return nil, errors.Wrap(err, "pebble: error when loading flushable ingest files")
}
}
numFiles := len(meta)
if exciseSpan.Valid() {
numFiles++
}
if uint32(numFiles) != b.Count() {
panic("pebble: couldn't load all files in WAL entry")
}
return d.newIngestedFlushableEntry(meta, seqNum, logNum, exciseSpan)
}
// replayWAL replays the edits in the specified WAL. If the DB is in read
// only mode, then the WALs are replayed into memtables and not flushed. If
// the DB is not in read only mode, then the contents of the WAL are
// guaranteed to be flushed when a flush is scheduled after this method is run.
// Note that this flushing is very important for guaranteeing durability:
// the application may have had a number of pending
// fsyncs to the WAL before the process crashed, and those fsyncs may not have
// happened but the corresponding data may now be readable from the WAL (while
// sitting in write-back caches in the kernel or the storage device). By
// reading the WAL (including the non-fsynced data) and then flushing all
// these changes (flush does fsyncs), we are able to guarantee that the
// initial state of the DB is durable.
//
// This method mutates d.mu.mem.queue and possibly d.mu.mem.mutable and replays
// WALs into the flushable queue. Flushing of the queue is expected to be handled
// by callers. A list of flushable ingests (but not memtables) replayed is returned.
//
// d.mu must be held when calling this, but the mutex may be dropped and
// re-acquired during the course of this method.
func (d *DB) replayWAL(
jobID JobID, ll wal.LogicalLog, strictWALTail bool,
) (flushableIngests []*ingestedFlushable, maxSeqNum base.SeqNum, err error) {
rr := ll.OpenForRead()
defer rr.Close()
var (
b Batch
buf bytes.Buffer
mem *memTable
entry *flushableEntry
offset wal.Offset
lastFlushOffset int64
keysReplayed int64 // number of keys replayed
batchesReplayed int64 // number of batches replayed
)
// TODO(jackson): This function is interspersed with panics, in addition to
// corruption error propagation. Audit them to ensure we're truly only
// panicking where the error points to Pebble bug and not user or
// hardware-induced corruption.
// "Flushes" (ie. closes off) the current memtable, if not nil.
flushMem := func() {
if mem == nil {
return
}
mem.writerUnref()
if d.mu.mem.mutable == mem {
d.mu.mem.mutable = nil
}
entry.flushForced = !d.opts.ReadOnly
var logSize uint64
mergedOffset := offset.Physical + offset.PreviousFilesBytes
if mergedOffset >= lastFlushOffset {
logSize = uint64(mergedOffset - lastFlushOffset)
}
// Else, this was the initial memtable in the read-only case which must have
// been empty, but we need to flush it since we don't want to add to it later.
lastFlushOffset = mergedOffset
entry.logSize = logSize
mem, entry = nil, nil
}
mem = d.mu.mem.mutable
if mem != nil {
entry = d.mu.mem.queue[len(d.mu.mem.queue)-1]
if !d.opts.ReadOnly {
flushMem()
}
}
// Creates a new memtable if there is no current memtable.
ensureMem := func(seqNum base.SeqNum) {
if mem != nil {
return
}
mem, entry = d.newMemTable(base.DiskFileNum(ll.Num), seqNum, 0 /* minSize */)
d.mu.mem.mutable = mem
d.mu.mem.queue = append(d.mu.mem.queue, entry)
}
defer func() {
if err != nil {
err = errors.WithDetailf(err, "replaying wal %d, offset %s", ll.Num, offset)
}
}()
for {
var r io.Reader
var err error
r, offset, err = rr.NextRecord()
if err == nil {
_, err = io.Copy(&buf, r)
}
if err != nil {
// It is common to encounter a zeroed or invalid chunk due to WAL
// preallocation and WAL recycling. We need to distinguish these
// errors from EOF in order to recognize that the record was
// truncated and to avoid replaying subsequent WALs, but want
// to otherwise treat them like EOF.
if err == io.EOF {
break
} else if record.IsInvalidRecord(err) && !strictWALTail {
break
}
return nil, 0, errors.Wrap(err, "pebble: error when replaying WAL")
}
if buf.Len() < batchrepr.HeaderLen {
return nil, 0, base.CorruptionErrorf("pebble: corrupt wal %s (offset %s)",
errors.Safe(base.DiskFileNum(ll.Num)), offset)
}
if d.opts.ErrorIfNotPristine {
return nil, 0, errors.WithDetailf(ErrDBNotPristine, "location: %q", d.dirname)
}
// Specify Batch.db so that Batch.SetRepr will compute Batch.memTableSize
// which is used below.
b = Batch{}
b.db = d
b.SetRepr(buf.Bytes())
seqNum := b.SeqNum()
maxSeqNum = seqNum + base.SeqNum(b.Count())
keysReplayed += int64(b.Count())
batchesReplayed++
{
br := b.Reader()
if kind, _, _, ok, err := br.Next(); err != nil {
return nil, 0, err
} else if ok && (kind == InternalKeyKindIngestSST || kind == InternalKeyKindExcise) {
// We're in the flushable ingests (+ possibly excises) case.
//
// Ingests require an up-to-date view of the LSM to determine the target
// level of ingested sstables, and to accurately compute excises. Instead of
// doing an ingest in this function, we just enqueue a flushable ingest
// in the flushables queue and run a regular flush.
flushMem()
// mem is nil here.
entry, err = d.replayIngestedFlushable(&b, base.DiskFileNum(ll.Num))
if err != nil {
return nil, 0, err
}
fi := entry.flushable.(*ingestedFlushable)
flushableIngests = append(flushableIngests, fi)
d.mu.mem.queue = append(d.mu.mem.queue, entry)
// A flushable ingest is always followed by a WAL rotation.
break
}
}
if b.memTableSize >= uint64(d.largeBatchThreshold) {
flushMem()
// Make a copy of the data slice since it is currently owned by buf and will
// be reused in the next iteration.
b.data = slices.Clone(b.data)
b.flushable, err = newFlushableBatch(&b, d.opts.Comparer)
if err != nil {
return nil, 0, err
}
entry := d.newFlushableEntry(b.flushable, base.DiskFileNum(ll.Num), b.SeqNum())
// Disable memory accounting by adding a reader ref that will never be
// removed.
entry.readerRefs.Add(1)
d.mu.mem.queue = append(d.mu.mem.queue, entry)
} else {