-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreaddata_3d_2fluid_hickox.nb
3356 lines (3287 loc) · 148 KB
/
readdata_3d_2fluid_hickox.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 150904, 3347]
NotebookOptionsPosition[ 148404, 3262]
NotebookOutlinePosition[ 148786, 3279]
CellTagsIndexPosition[ 148743, 3276]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[{
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}], "\[IndentingNewLine]",
RowBox[{"SetOptions", "[",
RowBox[{
RowBox[{"EvaluationNotebook", "[", "]"}], ",",
RowBox[{"Background", "\[Rule]", "LightGray"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{
"SetDirectory", "[",
"\"\</Users/spencerbryngelson/Desktop/Fortran/EV_spectral/D\>\"", "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"data", "=",
RowBox[{
RowBox[{
RowBox[{"Import", "[",
RowBox[{"#", ",", "\"\<Table\>\""}], "]"}], "&"}], "/@",
RowBox[{"FileNames", "[", "\"\<eval*\>\"", "]"}]}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"vec", "[", "j", "]"}], "=",
RowBox[{"data", "[",
RowBox[{"[", "j", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}], ";"}]}], "Input",\
CellChangeTimes->{{3.6015105933632*^9, 3.601510599971217*^9}, {
3.644085702411962*^9, 3.644085713655633*^9}}],
Cell[BoxData[{
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"ReEv", "[", "i", "]"}], "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"vec", "[", "i", "]"}], "[",
RowBox[{"[",
RowBox[{"j", ",", "1"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{"Length", "[",
RowBox[{"vec", "[", "i", "]"}], "]"}]}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"SortReEv1", "[", "i", "]"}], "=",
RowBox[{"Drop", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"ReEv", "[", "i", "]"}], "]"}], ",",
RowBox[{"-", "1"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"SortReEv2", "[", "i", "]"}], "=",
RowBox[{"Drop", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"ReEv", "[", "i", "]"}], "]"}], ",",
RowBox[{"-", "2"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"SortReEv3", "[", "i", "]"}], "=",
RowBox[{"Drop", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"ReEv", "[", "i", "]"}], "]"}], ",",
RowBox[{"-", "3"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"SortReEv4", "[", "i", "]"}], "=",
RowBox[{"Drop", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"ReEv", "[", "i", "]"}], "]"}], ",",
RowBox[{"-", "4"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"SortReEv", "[",
RowBox[{"i", ",", "j"}], "]"}], "=",
RowBox[{"Drop", "[",
RowBox[{
RowBox[{"Sort", "[",
RowBox[{"ReEv", "[", "i", "]"}], "]"}], ",",
RowBox[{"-", "j"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}], ",",
"\[IndentingNewLine]",
RowBox[{"{",
RowBox[{"j", ",", "0", ",", "10"}], "}"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.613600867927772*^9, 3.613600869377811*^9}, {
3.613600912448841*^9, 3.61360104377636*^9}, {3.6136011180496883`*^9,
3.613601118132347*^9}, {3.6137458733509293`*^9, 3.613745887169389*^9}, {
3.616359971839786*^9, 3.616360005974566*^9}, {3.644084307428417*^9,
3.6440843411775093`*^9}, {3.644085132547307*^9, 3.644085154768695*^9}, {
3.644085515228251*^9, 3.6440855158050003`*^9}}],
Cell[BoxData[{
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"MaxEv", "[", "i", "]"}], "=",
RowBox[{"Max", "[",
RowBox[{"ReEv", "[", "i", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"MaxEv1", "[", "i", "]"}], "=",
RowBox[{"Max", "[",
RowBox[{"SortReEv1", "[", "i", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"MaxEv2", "[", "i", "]"}], "=",
RowBox[{"Max", "[",
RowBox[{"SortReEv2", "[", "i", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"MaxEv3", "[", "i", "]"}], "=",
RowBox[{"Max", "[",
RowBox[{"SortReEv3", "[", "i", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"MaxEv4", "[", "i", "]"}], "=",
RowBox[{"Max", "[",
RowBox[{"SortReEv4", "[", "i", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}],
"]"}], "\[IndentingNewLine]",
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"SortMaxEv", "[",
RowBox[{"i", ",", "j"}], "]"}], "=",
RowBox[{"Max", "[",
RowBox[{"SortReEv", "[",
RowBox[{"i", ",", "j"}], "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}],
"\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"j", ",", "0", ",", "10"}], "}"}]}], "]"}]}], "Input",
CellChangeTimes->{{3.6168675429068127`*^9, 3.6168675458736353`*^9}, {
3.644084313444395*^9, 3.644084317141556*^9}, {3.6440843475894003`*^9,
3.644084353492567*^9}, {3.644085160750173*^9, 3.6440851924173613`*^9}, {
3.644085519494628*^9, 3.64408551954592*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"R1", "=", "1.0"}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"R2", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"i", "/", "10."}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",", "50", ",", "2"}], "}"}]}], "]"}]}],
";"}]}], "Input",
CellChangeTimes->{{3.64408487008776*^9, 3.644084920377811*^9}, {
3.644085035911333*^9, 3.644085037260747*^9}, {3.644085614407824*^9,
3.644085615612245*^9}, {3.644085696749682*^9, 3.64408569704844*^9}, {
3.644085878806616*^9, 3.6440858788716307`*^9}, {3.6440861665638533`*^9,
3.644086167200774*^9}}],
Cell[BoxData[{
RowBox[{
RowBox[{"xs", "=",
RowBox[{"R1", "/",
RowBox[{"(",
RowBox[{"R1", "+", "R2"}], ")"}]}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ys", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"MaxEv", "[", "i", "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ys1", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"MaxEv1", "[", "i", "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ys2", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"MaxEv2", "[", "i", "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ys3", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"MaxEv3", "[", "i", "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"ys4", "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"MaxEv4", "[", "i", "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pairs", "=",
RowBox[{"Thread", "[",
RowBox[{"{",
RowBox[{"xs", ",", "ys"}], "}"}], "]"}]}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pairs1", "=",
RowBox[{"Thread", "[",
RowBox[{"{",
RowBox[{"xs", ",", "ys1"}], "}"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pairs2", "=",
RowBox[{"Thread", "[",
RowBox[{"{",
RowBox[{"xs", ",", "ys2"}], "}"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pairs3", "=",
RowBox[{"Thread", "[",
RowBox[{"{",
RowBox[{"xs", ",", "ys3"}], "}"}], "]"}]}], ";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"pairs4", "=",
RowBox[{"Thread", "[",
RowBox[{"{",
RowBox[{"xs", ",", "ys4"}], "}"}], "]"}]}], ";"}]}], "Input",
CellChangeTimes->{{3.613605609952181*^9, 3.613605689777279*^9}, {
3.6136059136187267`*^9, 3.613605915061468*^9}, {3.613745845073591*^9,
3.6137458454705267`*^9}, {3.614304244074924*^9, 3.614304246458734*^9}, {
3.614304996065304*^9, 3.614304996961245*^9}, {3.614305106150045*^9,
3.61430510626928*^9}, {3.6151187820622272`*^9, 3.6151187823814783`*^9}, {
3.615118839237012*^9, 3.615118839325775*^9}, {3.616159921805851*^9,
3.616159923355534*^9}, {3.6161600447987823`*^9, 3.616160050039839*^9},
3.616160151904286*^9, {3.6161618230012712`*^9, 3.6161618361868773`*^9},
3.61619220960008*^9, {3.616263846958709*^9, 3.616263849904006*^9},
3.616264085330724*^9, 3.616264153219982*^9, 3.6163410425685463`*^9, {
3.616341167534094*^9, 3.616341182582348*^9}, {3.616342817948228*^9,
3.616342827989842*^9}, 3.616342995210527*^9, 3.616343112394095*^9, {
3.616343151744246*^9, 3.6163431567118883`*^9}, {3.616343196825721*^9,
3.6163432069271603`*^9}, {3.616360123570258*^9, 3.6163601484642572`*^9}, {
3.6168675487498407`*^9, 3.6168675637061777`*^9}, 3.616867594160879*^9, {
3.616867660514738*^9, 3.616867671817894*^9}, {3.616868208719874*^9,
3.6168682091139317`*^9}, {3.64397251006299*^9, 3.643972511412381*^9}, {
3.643972690424191*^9, 3.6439726910712423`*^9}, {3.644084364832223*^9,
3.644084386939912*^9}, {3.64408490344163*^9, 3.644084907342404*^9}, {
3.644085061412476*^9, 3.644085064759048*^9}}],
Cell[CellGroupData[{
Cell[BoxData["xs"], "Input",
CellChangeTimes->{{3.644085650691861*^9, 3.644085650751712*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0.9090909090909091`", ",", "0.7692307692307692`", ",",
"0.6666666666666666`", ",", "0.588235294117647`", ",",
"0.5263157894736842`", ",", "0.47619047619047616`", ",",
"0.4347826086956522`", ",", "0.4`", ",", "0.37037037037037035`", ",",
"0.3448275862068965`", ",", "0.3225806451612903`", ",",
"0.303030303030303`", ",", "0.2857142857142857`", ",",
"0.27027027027027023`", ",", "0.2564102564102564`", ",",
"0.24390243902439027`", ",", "0.2325581395348837`", ",",
"0.2222222222222222`", ",", "0.2127659574468085`", ",",
"0.2040816326530612`", ",", "0.196078431372549`", ",",
"0.18867924528301888`", ",", "0.18181818181818182`", ",",
"0.17543859649122806`", ",", "0.1694915254237288`"}], "}"}]], "Output",
CellChangeTimes->{
3.6440856509886503`*^9, 3.6440857223368177`*^9, {3.644085871031085*^9,
3.6440858812085047`*^9}, 3.644086171334222*^9, 3.644087234785778*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"Do", "[", "\[IndentingNewLine]",
RowBox[{
RowBox[{
RowBox[{"SortPairs", "[", "j", "]"}], "=",
RowBox[{"Thread", "[",
RowBox[{"{",
RowBox[{"xs", ",",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"SortMaxEv", "[",
RowBox[{"i", ",", "j"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]}], "}"}],
"]"}]}], "\[IndentingNewLine]", ",",
RowBox[{"{",
RowBox[{"j", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.644085206575283*^9, 3.644085254637371*^9}, {
3.6440855236028147`*^9, 3.6440855236745157`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"SortPairs", "[", "j", "]"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "0", ",", "10"}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.644085258356477*^9, 3.6440852686932983`*^9}, {
3.644085527454755*^9, 3.644085527529894*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[{{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.019444444444444445`], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJxTTMoPSmViYGCQAGIQLR5bctFV/K39tgKznJrPzXY3OucC0Qv7W1ON7Vbl
NNuFgsFTe+/WqZkHbjTZXQKDR/aP/3yyNjBvsqvkfWo65foD+6AXp6bX1zfa
zXteCUT37BeI3og9cKDBbt9L3/yqy7ftl7cyhztdqLebNRMEbtoruHydqfWz
1s6pmvOt6pbr9g1nGDe3PKi2q5ZK3Llc8Jq9Rg+jstusSrulU4K8NJdesf8i
9Fn7tGK5XcpkX7ObKZft/z6s374vvsRukoonEF2yn3U1faZUSaHdQZGfa6R9
Ltq39NjU712TYzeBLROILtgvSFawrXBOs7OUb/5saHHefsa363vs/8TbFbjf
ESw/ctZefbrKxityIXYyxwuB6Iz9U0/pzYrSLna5V8rNXlmftq/8/DSf4aSy
XfuxXxci5E/ZR+sLs4kvTtorIQkCJ+3nvlTT/LnHwfZT2DfLJWon7KPiWrn2
TLewcwMH8HH7A/wnrkqdtbTzSTece7TkmH3Op7PLWa+a2wIArqi4nw==
"]]}, {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.16397527910685802`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0.17543859649122806`, 0.9090909090909091}, {-5.2969739*^-13,
1.4864740736649*^-7}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], ",",
GraphicsBox[{{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.019444444444444445`], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJxTTMoPSmViYGCQAGIQLR5bctFV/K291Z1Zm5Zv9Np7o3MuEL2wty2svM3n
4WAbCgZP7V+GrLu4eRHf3ktg8Mh+EudBbSYeg72VvE9Np1x/YC/rHZm97mbo
3nnPK4Honr35wQ+qxm+89+576Ztfdfm2/ZWFP74bZDnvnTUTBG7aT92gN2sT
h5etUzXnW9Ut1+0/fK+XOCbrt7daKnHncsFr9ks4XAs3ixrYLp0S5KW59Ir9
E8mrE1PPBtumTPY1u5ly2d5hTsrE3oOKeyepeALRJfsVcVdX8NX57z0o8nON
tM9F+6R3X87Mc/XfO4EtE4gu2J9K2SvuGBCx11K++bOhxXn7ipDX3xl/FNoW
uN8RLD9y1v5I3XLdNfMybWWOFwLRGfv7LxuvzXJVsM29Um72yvq0fX7G7swY
vQzb9mO/LkTIn7Kfntha94NBcZ+EJAictJ9d7KFbw8a271PYN8slaifsr6ud
FlW57bHXDRzAx+1PMc1jjy1w3+uTbjj3aMkxe1EBueae7b/2AgA/Y7vC
"]]}, {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.16397527910685802`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0.17543859649122806`,
0.9090909090909091}, {-1.97950188547*^-9, 1.02140689*^-12}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.05]}},
Ticks->{Automatic, Automatic}], ",",
GraphicsBox[{{}, {{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.019444444444444445`], AbsoluteThickness[1.6],
PointBox[CompressedData["
1:eJxTTMoPSmViYGCQAGIQLR5bctFV/K39irqn/a9cnQ/c6JwLRC/s3dwj122q
cD4QCgZP7TnitAq3bXA+cAkMHtmvbjyqLfLe+UAl71PTKdcf2N/ymBxqYupy
YN7zSiC6Zy/y4Jz8oxaXA/te+uZXXb5tz7ru8P7cBy4HZs0EgZv2nhrsr+54
uR5wquZ8q7rlur2ozPNIgxOuB6qlEncuF7xm/yOWl/VkrNuBpVOCvDSXXrHf
17R25l8h9wMpk33NbqZcttdJrOr49dH9wCQVTyC6ZB82S+q3KKfngYMiP9dI
+1y0fyBjz3Ujx+vABLZMILpgH7POO0DU2ueApXzzZ0OL8/aR+jbb++b7HShw
vyNYfuSs/fGz28wV3wYckDleCERn7DunO4vfUAo+kHul3OyV9Wn7xdaitrs0
ww60H/t1IUL+lL1Zxe0OYf2oAxKSIHDSnp1pR/dhrvgDn8K+WS5RO2Fv9/1W
MeP3xANu4AA+bl90+DAb+7vkAz7phnOPlhyzN/0s4ZjjlHoAAJwBur8=
"]]}, {}}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.16397527910685802`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0.17543859649122806`,
0.9090909090909091}, {-170.07571463463833`, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.02]}},
Ticks->{Automatic, Automatic},
ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztWV+r61gV7zk97Tkzd+69c3QeHH257776FdQnv4APwmU0zkBkzHgJSH2o
WHQqdjA60SkYodCHQpAw5QYJFgKBYCEQCIFAPs1y7bX3TnfanZ6ce+aIDz70
X/Ze/9f6rbV3f/Dy1Yc/+dnLVx998PLF9z95+fMPP/rgFy++9/En+Gh4MRgM
XuPrxy8G7DvgV/H2Guq6Hgy+SR9DMAyDfaNff3340hUt/e0f/4af/u6f7PMv
p6ts5Ue/DtmnunrJFpG3IKQV91GVHatLqtKfn6h1RVsUzT+/D6OnQpO6KqEo
SvmL3suigLKqhX86Nb6hjydQ7pZgmC4UQthuPaftJr4M24GkZM9z8KbmQHp0
GWUNu8u7RDyHInJxWYgoI7Bwa5BxcduFCcYihL0/A8PyoMRnZbLC/ROIq4NV
GvbopXiFVKYFlsVfpmGCtyu4TiModopgfFVlJfS9gXy7QPtW8KVjwTyQ9mSw
MCzYFjXJJbEHaWWWQhzHkCQJvdj3rKguhZlVrEirUpgzL85cWK9c8ubMTyFy
bEVaDo5pM2nnzBzTxy15bmrNwHMnSsBK8GwDJssNBL4PUVoQeeSYYDoRZ1Ux
j5sQNmKuW9l1lGGDP3Ox1/TxLqRbl7Yb1rLxY+Siu50AsiyDNE2ZEyAPHdy3
gBTzJfUXpGJe110SlcyXEm9E6hc7T1LTVvYb/ceTb4zJl5Pd/sLmihk2bJLi
qr9phzL84lHhoHvpAcJlval2/enu7aq/e2zvyf0rsumrdehDwFE+U+3/o5qe
oxPAzCNvIDHdmHiQ1Q1g9sVLKVUNUkvqEYbWKcyQ3ItLqoQVIoC9iu+FoWcM
vQtXn7dxtQgRXhbCbHTHdg4WAnqox9U7AP0+EIuCbVMRHC5I8FmIVRH9LLAi
cxM1jkrRFRHxDCe8A1i1VnUDaQ6uacAc20JdpuggAxzEtrNAeqbPPjsBzjLx
wSaExPxY+JQXncjZu+zGmsz57LgUrzUZ/dmb83wcvHhLI/UP3fQ3Gpt6bO/J
/T6KP9Gw/n03/dsaxXts78n9Hc32T+/erirz6bGBT+/H85lm+2/5drmkAr+E
YLVB6IrgmchNRVVVxG+4BG4QJny+g7lpiMrCWvYTjktNfxgq/UHfCKRERYoq
vSXxCQelecCpsy2hdFhoe4MWoG410pTv0zZMdvQE9GIFVTNw5YRj3r++1DUF
BYPfE15TfVsfjWu/aivQ0Rsg3bATiwXuag3uDI8TxhxSfXPQuuE9kfWqG+r2
iKqu/bIdhDL2qNFuAh/8IOLgq+8eWunfOB9y3UCme/ZxWyt+zLIhSPaQ7VOc
0jMMkrbhaLX61hmxauXqng01tLpxY6R59sMjM/gc1dSUYfPeqelsWjNe9PTe
UGOGbigbaZ5da/jpOosO077TjWnffoAXdd33Lc2zp5pntxp+73fqomD2dx/g
h1uNIu93xkTrr1dvoPf/0rnua7Ip1RU2pYJBajMWVfi7KCv6daPZJ92nNrSR
ui/n+2Q4qvLAT8oQvFoy1H1ShtpIRy25dPXQyNDtO23CWlfcCkCucxzMZeUb
Uwhzcf3g4G8awnPYzC3ZXO3FRo6+QuJNB4sCHMK+opkEsFMurQmEZS2K5ynr
2wfckX2bgJ1Gfsh3a7rJMkw+SftJ0dBG3rShnSzFcUGhZWrNmlnBgk0saZ9o
aYvIOTpwUXMRgXr7BCflgfPgKbrYa8YQcwZhVime6sMih9WMH2kvYL6OL9jy
RXcU36X355SA/hRx2otpLV5N6OKNTqlFBjm28JIOlLJdZzI8QrnzPIosgwJn
kCTaQhAEsA02MDVNcNYh5FWt8NCfmtn3LMsx+QtYsvYY7ElGxi4IDYel1IHH
fkPNfscaexXDBPmtklLhUcF6wvTcEQ9+lqO4CR7vdPPAYsvyUviP67rZV/Jw
13G4b1zIO77ZXKzuljaYi3Dck7za+zCZeuLyckfdFbVS40uh57V5DfxkbUEg
arLOA7BM7q2hSCx1KmSDxyLMlWh00guaAlyqPAfW6yXqY8LMXcO+lJ4cd109
DMVyVUpnsqJh4zGZLKkLjI0pp2d8becW0/CyMZArMA/5lWqdbY7SoZOFbNPb
hQGmGzUMGUnHtcilYhKbHCXUsSgaMoqd1NLh6daDCY7mk7kLCxtLAB1+Z4Xy
WLqWEgt0lsXvEUS7vOLTv7i9wOejHqTyFp6n2wz2WByeZRPIjhV7NXP6IQhY
9zODAGu1XnHMnPnUzJogIDZa820ThHBhH+I4pjguLQ7RztKlcrPdxqMd1DKE
FRWrTWArQ9hxwSSDsPP47YplcmyPioO5HaRS1zLxSFqQ5pAnARWhG+W9Qsiz
FUGT1kpxQ3eIA/P1HqJdytdTH/OM7Br1YDFssoDh7hymrFcWtRpFzXlHeiRm
HpksEZ19CKJUGW3G7c7GujB6zVGjx6DDhBXqHYch6h/DPivuoJbzRuiYlC51
rYZAe4N3nC68C2SEW3hI6klN+kw2Ijws3Qn1zgTwVviIVbY5ZycZdj9HQgYN
kKVrpDFhiy27TDc8q0rhfT2pLFtqdJMmEcctt54cBWXA6LLZciHB1rpP8fSY
FYeKzbdktZ+WIoss5gGp626Jobd5H9l5+N1asXiPzlMfvF9Cyo73TGi84fco
20zK7rgabcUOrZptWJLzP+Awm3tSV+mKvBygalW2pdluk1Y9YleXCTiWmOas
BfvLtOmBLAtCb6bcCqUCSPR0zUiN7dzGAmWXy3J/96kXqQocdJXbJ3sZCbor
SJix4vnCT64a1TJl4puwmHSRyOgyrSbGQYpp0ow6bjieXC4PpLQ8WvFxmUHj
bMUQf3CObqistR2YtM4OPY9cXxdLPf8db0J7OhXfTTbumrbO3OFLynPzwReM
cNjef66jkGtkFz7+X5SfBN5s7TF4/n/tMdauWmv4/eo4fbT97Nw/hqfjhw4V
//vPRm3LOtDeO67vU+T5O9/yuvUxuPgPC9hhqw==\
\>"]], ",",
GraphicsBox[{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.019444444444444445`], AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxTTMoPSmViYGCQBGIQLR5bctFV/K39QrF39aeYUw/c6JwLRC/sjTc/dlxp
nHYgFAye2t88dU7tbFT6gUtg8Mj+xVmXtxOzMg5U8j41nXL9gX3dZBlO3/DM
A/OeVwLRPfv9q09Eu8lmHdj30je/6vJte6VDgbtmHcg6MGsmCNy036H0V97Q
M/uAUzXnW9Ut1+3XVU3xMtqffaBaKnHncsFr9sfucTcu0sw5sHRKkJfm0iv2
X8yvPI3ryzmQMtnX7GbKZft/V3omL/6Uc2CSiicQXbLvZn/ScTA698BBkZ9r
pH0u2hvf+Z7PdiH3wAS2TCC6YL/g3fIK0Yi8A5byzZ8NLc7bm+7o03FhzD9Q
4H5HsPzIWft7cQuEPR/lH5A5XghEZ+wfR2fxbZxUcCD3SrnZK+vT9goXm3Vv
9xceaD/260KE/Cl7Zu+wTBvn4gMSkiBw0v6heb+PclLZgU9h3yyXqJ2wj7i3
83LHouoDbuAAPm6/bemcJYaVDQd80g3nHi05Zt+XG7F2+tXGAxcKgr4/3XjU
frdTYaNkrcNeALXQzbI=
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.15793528505392912`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0.1694915254237288,
0.9090909090909091}, {-570.699061098903, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}], ",",
GraphicsBox[{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.019444444444444445`], AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxTTMoPSmViYGCQBGIQLR5bctFV/K19+V/Hh0df5B240TkXiF7Yr4vfM/Pn
9vwDoWDw1F5J4XOacmrBgUtg8MheIMuUO06m8EAl71PTKdcf2Nuv2PdsOW/R
gXnPK4Honj3zw7knhZyKD+x76Ztfdfm2/Z2WDfKX95ccmDUTBG7a8yso2d3u
LjvgVM35VnXLdft9zqbCQqsqDlRLJe5cLnjNXuwTg3SkZPWBpVOCvDSXXrHP
nCkt8+1Y7YGUyb5mN1Mu2y/Jyq5tsWo4MEnFE4gu2Wcblt3piGo8cFDk5xpp
n4v2InpXjD8rNR2YwJYJRBfsHy62XVa5vOmApXzzZ0OL8/bBzHMy3dmbDxS4
3xEsP3LW3sY1/opaePMBmeOFQHTG/syiO/++L2k+kHul3OyV9Wl7buXvb1f/
az7QfuzXhQj5U/Ynvjuob6lpOSAhCQIn7QNuX+BISWo98Cnsm+UStRP2cfq3
KmvXth9wAwfwcfsbC5qMfq7qPeCTbjj3aMkx+8XH93MKhEw8cKEg6PvTjUft
X4SfeMosL78PAMYQy0w=
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.15793528505392912`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0.1694915254237288,
0.9090909090909091}, {-1109.0156621900176`, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.02]}},
Ticks->{Automatic, Automatic},
ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztWs2r49YV93u235tJZ5KZkKSFFjKFrNpVdu2yXbSrdNvdlEcYkVCFVOmg
LgzBaU2C2jhUDYJ6oYXAC4MXBndMEQhcBAINBoEQCPzXnJ577r3ytX1lS+9N
6KYLP9nS+b7n/O65R++Dm+cfPfvk5vnHH948+fVnN3/46OMP//jkV59+hre6
F51O5wV+bp502HfAr+LPC9hut53Ou3TpgmEY7Bv9+kezR5fsybcqbb+inf7r
JXzydciunb/rSdjjp1+s2LWOpE7KseY7O/BQ0G7LAvK8kL/ob5HnUJSc/1JD
16vXc094VEQTMEwPcv4YstDvkHpkNgY+bOh+Bv7Q5Le7MAk3B6RdhXRnSa3W
tyAPPXwstSYwQlJ/zYwuILANsIM1pPMRGJYPBdIUcYD0A1iXWtpuvcbOFawD
FGRaYFn8Yxom+FF+KW2JFFvyFVjGWLoC2dIBa7yClWuBs9gI4RsYGxYsX2pp
yRYyZWdBsUlgvV5DHMf0Yd83eSktKNf7FtimInU1JgtC11YsyMA1bbJAQ3si
Gld0eQe2RQhDawS+N9itPmo20a+w4NIizwLDZZpNMN2QiypD9NmE1UstLdd8
rWo+KpdvuCXXdHkbkqVH5IY1EdmQgWca4MwTtDLBSBvghhn65iLdGBLUmMzH
ZHWmp+3UmaEW9jcHCRn5QiQnLeI52Mws/NjjOSUhS7j52ObmGjbM4ryOtltV
sSwGTQjuABCtwO8VapBgxIAnL+qBRwdQvUPrvieWaZtF4FiGiKsBI38FZTso
OgM7XNNjnqbjJX9cRLhqmMp5G/jZuaZR06fL9+sAR1TSirPlIamvQRE94uRC
vQovUmkNxqCiiGcnGsRstrywHcjkJ32WoeUoOoYUH29YrTJUaYMoNWp09TPW
qR5BgomWzh0BpW1g5LRqFTb2VD+ilQkcS6SuBYHIx4bwsSuJbr2b3yFM9DRa
v67n72oCcpa8X0n/0v9PpeWv9Wx9gRZSy+/+vGIszjECnWp9TiMQ3wevyDQm
n+kxvvq3NO+rA4DCZApGZgVQzmzNy+buAMUNuV/FiBmhGqPG7C/7aR9Pce+2
fb5rZktCmVcBZnxLfO3IJBknYY68Dhtin4fxcwT2bVO0sraDaoB9rx3YqISp
yhtlPT9vBpXRhFfyyPXAwcgZ9gTv3x0q3zgoBBlRVj+f7y9qiK4PgwiSdQir
MII4zaB8BTD6WEl4GSjl++AQUSeUIhFqLNYTgqt1eXdEfUsDIHuqGaKWsPJH
Va258/h2iPq2BtsG9ajzAw35n86Tq540IK+TThb/SEP0vF7mDzUmNCBvKF3s
FW+2htYfa/R8qmJ3n9ZtYg1gVbQ+c9bh6BNNMIRWjhVvUmbF4RIWiwUsFzMY
mia40xVk+jNlHWbq8vpJvc+ncfEleCx3By5MpxPqB0feFNLNLXDxwKT3NCb9
vhkMcmdH2MqV4Fs2X6bbwCBZ9J5mZYQhD0TNrwO2kzl4Ih0wAGt3Es21K6Jz
X9djPdu3hNZ/wHu5MG97GtVa8hON/8/UenidTuM24hf5fhus+6nGM11v97S+
3t/XmNmA/JzG39aL+JlGo0pOnv1cI/Nac++Dej2/1Oi5rxHxi/MiVPL7GrEP
NHSPNPferVf1Gw35A42qR5p7ul2md1scf9rQF91O2FORt0u5Ox1SPu8GhiLf
XwH2/63ebdnQFPGUdxML3k2UJR6MW80d73Twp6JOFjBgBe0uaLrRatR4+gzO
1Z8ZM7ImNAXPMsAcL6invB2eH5z7N9Ec5pFgKJZIUTsdbNWwHqhJpjaB7Abz
NGOzOlqU23SkfUVNibWQs9WoMlu9dyXulTTsKunXtYbuLrySblvcQQfjzTnv
PU1N9zX3LtXwonDsgSbD3Qn3Nl03ljtFNgthaMhp3hBWGU+C0MXfuPhxMOyJ
wvZwseR6d4WIc+wsKWeOJbHBHs/kzFbU/L1zImS2RZ6N6ZIrIWqmfapod+fy
xUmn11gEFkQwkiIsZ3Yg4kEjEXnIZmw0M7++nfHmyKdy2jOeI2+VBxJ6VRHB
iCPzBTjT9QV7fKFsZ1z6Q7B9PiPhvV3A0TTfQMYStYgJeS2EQvId0bisrHiD
knyO+8UpGYWYN24ETLpU/HkrGVkcwnK5gAV+PPR64E4hzspWMtS5p7RjvMpa
ySiToDpuE+iK9xhcxsNGMmhXS2cox2G2CHBo5wOPZY5NP/eBV8XrdTvizv50
DoOhmESVfNwcxIWaFuJtjIub40Kk5TZbgGW6CjT3CIc8NnmxPDbO7Vd4mJ1h
7fM9dbtr2XeLcJr/UmyeERtQoWPBLADHNsEaebBKizYiWKwFwNJn6Ziso2gj
gr8YHVevY9nSoSdNREhc402DgeiaiyxoqtpVXoFleEIn1bK5qOlLZPiTpQ8D
bHkGjgdjDJ+L4dckgGcpRuRLNILvzb0KhkpYerYsKdXvc6zUfIk3iVkz1ksJ
/uWakHO22UI8GWDxFZ1+Y/4rLOAZHxx6AQQeN2OWls1NuBIjN8TEkQueY1Mq
IoA3D0AX0tlQbgmtrKeSZ0WH7ZhJb4oogHLha1pCyV3EPrUBiwQ7r3hBxY8b
+/Ge0Je7rcDugxBusHGfR6KMc8rgcagkfk6jklMitnkKYZTw58kcfbFZC9pE
hMQf7swAxkOLZXC/sfZ+BXzefAHz2QKSvOw05xflN5xCmq5huQphHaeQl42s
lwnAVwfTcJ62Us3mD6wXX6QlvUmwsLSxL98lgLZt3zN8MBP5UcrdY6/4ryi3
GYSYDusiWQdJQrtVBQU0dFltSupjBvxg1hfB1XB2dqxTSt0lshZUiHTyOMUq
O2LaDPeg8rQqCiYG2F3GsNmkkMQJq7YmVrLXzRZzih0HC54qftzIwW2xoeNc
kqQQzRzpbDPWkLTOkoJ2aWN/ZWtOSpd7i4J5wbg3SyGp1Kws6+hc+QrfGkNc
bHcxK2A5GVYt5YD3zNJ6DWe1pR+/C0iqZdLxyWWVgMZ6qFP0PfEs8nfmseoP
cynrNN9m5XPApGM9nY5O8smQSKznH5PGBJMwa6IyCpyKdRSE1DZXfMcHMyWU
xeFrFXkGbPMPJXLYczQy0vO/U2k/OlZU2zb7rUxuXJXz6vQQnjMrg6cD5pqW
hfz+Fqq37hV9zU53PDfgHz7Oqn92ik91QLl/nuX/ZnzXZpySqfsHESV9Gr+e
0NXMo//Rvceae/19z2r2iX8eVvkx/kw4yYu9S+fivz3YVnM=\
\>"]], ",",
GraphicsBox[{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.019444444444444445`], AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxTTMoPSmViYGCQBGIQLR5bctFV/K29oEawzvfHdQdudM4Fohf2kzMbMvwT
Gw6EgsFT+xNqNYc47BsPXAKDR/bXl995uflr44FK3qemU64/sI9r4p26r67p
wLznlUB0z37PR+vHDk+bDux76Ztfdfm2ff0U3Zhqi+YDs2aCwE37TzuLSphb
mw84VXO+Vd1y3V7gdtQZ+WvNB6qlEncuF7xmb7J650Mvq5YDS6cEeWkuvWI/
RcNeMet0y4GUyb5mN1Mu2y9ZvW3d1z2tByapeALRJftyMWFnhfj2AwdFfq6R
9rloLzbzgpfqm84DE9gygeiCvVXTDaGq4N4DlvLNnw0tzttPN1ST0q2fcKDA
/Y5g+ZGz9lH+0+6uODHxgMzxQiA6Yy+4XtinL3fSgdwr5WavrE/bn9c3i/G6
MOlA+7FfFyLkT9lLaJ08vUxl8gEJSRA4ab89fkr3kZ7JBz6FfbNconbC3j12
nTJb6JQDbuAAPm7vtnmJo7f49AM+6YZzj5Ycs1fVY2SwvDXnwIWCoO9PNx61
f7BT8PksgbQDABOZyVM=
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.15793528505392912`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0.1694915254237288,
0.9090909090909091}, {-1846.5556640800871`, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}], ",",
GraphicsBox[{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.019444444444444445`], AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxTTMoPSmViYGCQBGIQLR5bctFV/K29ggfr4cPaLQdudM4Fohf2tpMr/tis
aDkQCgZP7dNfVhVsim89cAkMHtlHVX1rjM1vO1DJ+9R0yvUH9ol+btJOz9oP
zHteCUT37A8d3xq842DngX0vffOrLt+272hWLrb70X1g1kwQuGnf/VSczaS8
74BTNedb1S3X7Sf45LB5Nk84UC2VuHO54DX7Cgn7xayTJx5YOiXIS3PpFfuf
4pc+M9tPOpAy2dfsZspl+ynFS7e6rJx0YJKKJxBdsn+478zlG78nHTgo8nON
tM9F+1dizMIOwZMPTGDLBKIL9ocd7ibWXpt8wFK++bOhxXn7help/NYfpxwo
cL8jWH7krP18tQKvotLpB2SOFwLRGfutG2zOnDaYfSD3SrnZK+vT9uuP5CW8
Oz73QPuxXxci5E/ZT2EIU7E+Nu+AhCQInLTXLGVhWhU9/8CnsG+WS9RO2M89
+y76GeOCA27gAD5u377SeHbqzQUHfNIN5x4tOWZ//PfXhDd/lhy4UBD0/enG
o/ZCMz9VOlQ3HQAAjebQAg==
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.15793528505392912`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0.1694915254237288,
0.9090909090909091}, {-2686.4616772527547`, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.02]}},
Ticks->{Automatic, Automatic},
ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztWs2P40gV93Q66R5mBmZ3YGcOSMwFDnsDTnDcA5yAIycYtVZEuyKrXS8j
C5FLFqJB0W5gzeBDkHKwlEMkHyJlZYSlSEEWHgUZWViWLOWvebx6VeVU3OXY
6c4IDhzcSVe9r3rv1e+9KudHV8/f+8UHV8/ff/fq6Q8/vvrovfff/dXTH3z4
MQ617hiG4eNz9dRg3wG/ij8+bLdbw/gGfbSg2+2yb/TfS2XqjM38uRmt0VGn
YPbFP+GDzwL2+XlZonFOJGz655/47PPzowXpLXkgprbbHNIkhVz8x/7mWQpp
ltN/ZypdyunOq8V2xFToDmiarYGv5BKcIIFkNQOTjffYnAVemJKIYDrgZBfQ
nwRcahLAgIvAZwB+IixUfc31PYZtFsIQCU17ASljznM0NYUJ6hktNiQwXo6R
04ZkM8fPPqwyRreGPvK54b/BG3TBmq6Jdu32oWu5kCku0CwX3ZitXVxRD0zT
5A9qHExXnDKPwLHQfNOBKOdRyrNMSEQ3pkvooSV/+8KG3mjBhy9hOTJh7P8D
7J4Ji2QrvLFA0Wg8W3+1PeiPLIZwvYYwDOlZs+9xypnuURyXjoXMY9jgd2/I
gjEEd+bCkAVl6EES2GCOloa0xx9bZI9jKvag6WbPKewhc17uByWPMRm9FcsZ
HElhjAaPMQnWU9Tfn8Bi4cEiiGg+RZ3drsODt80ocLb/ChzksQOeJNnKIZrk
cFC4+rcgj1ycNsGPc0omFufpOkNVDkUkjGPYRBFEMYpPlhRFL8ogizyMCvKl
W/BtEyPjYR5k4I170LODVp3mS1rAclLsAOjbHl9Yiind6/JMb4ElMj30xobM
/rEXcqmY0LYpst8cQ5hpsr8WaU4EWDViZCwUADL+qPJf7OFUCdHqSDVS98Ar
vQF4kdktjdl/aAZjGmw6GsZKXpW2qp7Zs6YK5HI9cJ0A5PhYu3DQi+nfC0d9
JgDn0ZEAmGhR7ZVPAGgcg4Bk67lAUum1Z7/1mXmf3gwOEy3EvboBHJY8Kc1k
nmQmigB/2gQv9Rj46gR42T4Q31EzLNXg49FYSjvmUpP+ezY8qEbV61B5PKyW
XHOhwYbRadDySxrRv6/mv6txTAPyKum3x/1bd46qCZdyH2YBWCJPmL4DfaJx
U4TVOf6FasbXyAyzMOP1tY/SFDWoLwrMqkBUCcf7Rp6so2xVJefOsDowzVeK
YafrLQ81W48pTtN+H+ypzSFKuOU1d5kXImXSaEEpwLI0EKpv2WFeb/R4frIA
rFDZbo2naChLy3ugyYDfVYOCJFczWSUnM758oNB8Ui37K4JNkS1F4PIYc6sY
Y5S/qRelrEqKRVFMYLusghT8uryUR2LVqiCNUPrclrrX59X2PRFbSBW13e+T
r4n7qFrc14EXsQPiJPute+mS6qea/NEdEH55uAAc6LCbFwAi/JYmQ/eUl2H/
9TXU36z2Qx3s3ysZebo+umTj2xobuzerAKdrp8nEtzWB7DapBelr66B1zjrX
jD2rrxm37KS1WP5tjceelfddqaKcopkmwu9U+0EHWd/TkP+0nlxdmkpOJnxf
I7OjGftxtZ53NHp0PfY79SJUcl1Xf19D993ykn6iIbqvEfZQQ/dEM9autvtn
GvKHGlVPNGN7Ys9JrCLmw+OMkyUqTw+XI13Z2p04cEKppIbNZd+jjweEVjNE
S3m4tOThsrYOtXZ1qLDr2or/pGp7A1LCFXblwLhisNlJ3//XEYUn02540Zu2
BbRWX83kkOUC/u9ileiB5f61QUVpiYqS7NaqXvxyvY+qqgTk0ZzMHTouuM6Q
vs83cYMy0RJlQlGsX7r0MKtEFk473gK8+QKiND+yEiSHPFyoYSIZ+TKEON5A
FEYk5gg0VyDzq5oEbstEzzNM9ExE9jrdw1vwFnTb2+pI63UoY9zBAr/uw2q6
u9xhGU+lsboeye1XlKOKzHhTbPFAES+3rHogXM9GNNcTqlbJtrjRr+GVallG
WTYHmE5DtStVrWVTFW3Km6xczidMXqeS914t7zb1qVcLMhmwu01sLVCPnezp
OrAIbgN+d1jwm6OZ2HFb4051FXqD/uIJUg+DlE9xkon2uAuLmCfIku+6dkP2
PAlhuVjCAp+5M4Be3wY/TJqy67R3x35j9jykKjNdc2TybcX4+/Xs5KuIXg7M
N/nFUUb3CqNXEwt6RxiNGu3+kCUQIcfUwqC74VldLDuQ8qIix2VRaYlcysWr
UukJdKTIsErWMzlNkI547M5gMrJwUwxh5m9quFtiOue4RE/Crvv4We68mW52
GcM241K00rE33LmzklseF5ZjhABHhY4GCn1eRJJd/Lq1CqWX02gJo74JVn8E
DhZX0/YNNXa0T9+Usng13oWFV2P5XoM1Gj15oEm27cNcxUUmJs0MO57BfAPb
cIIWBLulH2Lt0IulEQPNoQMz1yHlQy9qpLhT7FaWHY7D4dfx4xpuGamc9oVF
wFljrvT1it1Fsjd3dJ1tsspmNLVV7DzWYaQIUo5JedJkl+nbmkIwti7rYCXe
JEb0tmmyStuHuVsi4tKs0biPFc/vNNHZ3sHEZA4Lz4MgSo1GrB1Rroaw2kQQ
LH1YrbHjSvMac2XXQTAy9JRi1cg/E1Pe/8e8zQuSptxk7gAiEdVwSnuzQdgq
2sSdWSHPBz+mssEw39mFrYJb5i7bqJSIzm6rVbDI3A0ck944x3EMURQxpxs1
2soutOjMkcIUv5vTsDF3hv00niDYDfqanxzsZXyMbozJcB5RpRrxxr8ptyjI
4wVy5xsKPkq6ho+PxHbAdrRofLAfPRe+i/1p0Z/10YdZAe7XWOS9BANxc6+F
rJSernbS2TMJkjqWPPb5q5hrzeY1FlkUGVj2FS29HvV2NYqSwOUQy5Jt6EJc
v5yN4ix2/N7dot7wTaW8UtDfB4hXK4/FcKl1PfAbt7ekY/T90YFTo+Q8VNdf
MsbzEv3h6qJooof319VzZzfkk9ivznXl72j+b8Z/0wzdD3f20qeylOt+ErI/
9vB/aKxT2oJ6FJ/sb+0S3vyFz/p7H8ad/wCjzkMU\
\>"]], ",",
GraphicsBox[{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.019444444444444445`], AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxTTMoPSmViYGCQBGIQLR5bctFV/K39te8RJz6+7Ttwo3MuEL2wn7tCJN2k
fMKBUDB4al/92UWHO3HigUtg8Mg+ekrnz2qBSQcqeZ+aTrn+wP74tjNfdrRM
OjDveSUQ3bPPmSzAN+fmpAP7XvrmV12+bb9KwNhdUWPygVkzQeCm/XGBzDr7
jskHnKo536puuW5fdcHw7T/lKQeqpRJ3Lhe8Zn9VOLdgutfUA0unBHlpLr1i
v/f5Fp7NptMPpEz2NbuZctm+V+Pd/8kHZh6YpOIJRJfsE5o3/tBPnXPgoMjP
NdI+F+131v3o9Jacd2ACWyYQXbBv8hLltnwx74ClfPNnQ4vz9qEsV6Kyy+cf
KHC/I1h+5Kx9z3T2/3EiCw7IHC8EojP2Gr+m6Ea9WHAg90q52Svr0/b30382
T01ZfKD92K8LEfKn7E9tfLbgr96yAxKSIHDSvsNtnU+zwPIDn8K+WS5RO2E/
79vDGVLNyw+4gQP4uL3suqfFlYYrDvikG849WnLMvinuIWN9zpoDFwqCvj/d
eNReafnKuaaakw4AAEoL0X4=
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.15793528505392912`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0.1694915254237288,
0.9090909090909091}, {-3638.248061220919, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}], ",",
GraphicsBox[{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.019444444444444445`], AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxTTMoPSmViYGCQBGIQLR5bctFV/K09j4f1eW73yQdudM4Fohf273nfiPqv
m3wgFAye2s8pvPHHMmTKgUtg8Mi+62TGJNbUqQcqeZ+aTrn+wP6cbZKnx8tp
B+Y9rwSie/YPT/1XeHNyxoF9L33zqy7fttc985DD8cmsA7NmgsBN+12H8w/I
PZpzwKma863qluv2Ztf3KT03mXegWipx53LBa/Z6nds9r7+dd2DplCAvzaVX
7GsFczbwl88/kDLZ1+xmymX7KYJmVff5FxyYpOIJRJfs7/VOjIjev+DAQZGf
a6R9LtrvkvVxfhW16MAEtkwgumDPY+9Rt3jnkgOW8s2fDS3O2xdzqnKlVC47
UOB+R7D8yFl7FcVHwjHKyw/IHC8EojP2J+VlPY5MXH4g90q52Svr0/Z7FNg7
3wasONB+7NeFCPlT9rFLfpYVF6w+ICEJAift2TznvU8sX3/gU9g3yyVqJ+wf
Xp0n5Wy54YAbOICP2/9oCfWb2b/hgE+64dyjJcfsraUfBStrbzpwoSDo+9ON
R+1TFJqa2dvmHQAAY8HL+A==
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.15793528505392912`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0.1694915254237288,
0.9090909090909091}, {-4651.137998706482, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}], ",",
GraphicsBox[{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.019444444444444445`], AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxTTMoPSmViYGCQBGIQLR5bctFV/K19V8byxpm3Zh640TkXiF7YT3u4MmL+
rNkHQsHgqf28DXb6t43nHrgEBo/sBa5Ni1rjO+9AJe9T0ynXH9h7Ru9RnvJt
3oF5zyuB6J59W2d9j0/V/AP7XvrmV12+bX9rV3XbZ54FB2bNBIGb9p0NSslX
Fyw44FTN+VZ1y3X7j/rGsR9PLjxQLZW4c7ngNft3DnukxJsWH1g6JchLc+kV
e4e3/J0xaUsPpEz2NbuZctl+54dwwb/Llh2YpOIJRJfszW9oi6qbLj9wUOTn
Gmmfi/aGjWxB8xYuPzCBLROILtiviy9M/JO64oClfPNnQ4vz9mKi0zWNTq06
UOB+R7D8yFn7px96P+c0rTsgc7wQiM7YG0xxia8Q3HAg90q52Svr0/ZeoW+V
byZvONB+7NeFCPlT9pd+Xrp08PmGAxKSIHDS/uj11qOP+zcf+BT2zXKJ2gn7
bY1N0p9Sth5wAwfwcfsfBxZq3b6x9YBPuuHcoyXH7B9es5l+k3P7gQsFQd+f
bjxq/02y3KX93LIDAMv51qo=
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.15793528505392912`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0.1694915254237288,
0.9090909090909091}, {-5897.8499639534575`, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.02]}},
Ticks->{Automatic, Automatic}], ",",
GraphicsBox[{{},
{RGBColor[0.368417, 0.506779, 0.709798], PointSize[
0.019444444444444445`], AbsoluteThickness[1.6], PointBox[CompressedData["
1:eJxTTMoPSmViYGCQBGIQLR5bctFV/K29ZcfMxmul8w/c6JwLRC/s2co55q9i
XXAgFAye2ivadMpltyw4cAkMHtlrG5ya8Ctr4YFK3qemU64/sG9NtYq8vH3R
gXnPK4Honr2xq/PXPOclB/a99M2vunzb/ry0xZp/x5cemDUTBG7adydubNQ9
uOyAUzXnW9Ut1+2fVJjYPLBbfqBaKnHncsFr9iEvg2tfr1h+YOmUIC/NpVfs
557rYylOX3EgZbKv2c2Uy/ZHTjw7fCpw1YFJKp5AdMnexz7Fojdk7YGDIj/X
SPtctL/BFHRs5vz1ByawZQLRBfsijqnL5aw3HLCUb/5saHHe/ksU59OXPRsO
FLjfESw/ctZ+6aPfz7hLNh6QOV4IRGfsOR6f720S3nIg90q52Svr0/YmD/es
PZK19UD7sV8XIuRP2WvO4LHJuLX1gIQkCJy037CsyCjyzbYDn8K+WS5RO2H/
STJLRZB59wE3cAAft59crrZB797uAz7phnOPlhyzl9b3jS45v+fAhYKg7083
HrXvWryp+8r/9QcAjRrRrg==
"]]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->{True, True},
AxesLabel->{None, None},
AxesOrigin->{0.15793528505392912`, 0},
DisplayFunction->Identity,
Frame->{{False, False}, {False, False}},
FrameLabel->{{None, None}, {None, None}},
FrameTicks->{{Automatic, Automatic}, {Automatic, Automatic}},
GridLines->{None, None},
GridLinesStyle->Directive[
GrayLevel[0.5, 0.4]],
Method->{},
PlotRange->{{0.1694915254237288,
0.9090909090909091}, {-7375.45451815033, 0}},
PlotRangeClipping->True,
PlotRangePadding->{{
Scaled[0.02],
Scaled[0.02]}, {
Scaled[0.05],
Scaled[0.02]}},
Ticks->{Automatic, Automatic},
ImageCache->GraphicsData["CompressedBitmap", "\<\
eJztWt2L49YV145nPLOd3WQ36U5SaOm89A9o+5Q8NtA+dfvYp7YMoSIBha7S
RQQMwSEmwSRuImb14IIfBH4w+MGgohaBwCCqRUVFVAgE+mtO76d8pbmyNLMy
zUMfZMvSPff8dD5+99wj//rq+Qd//Ojq+YfvX13+6uOrZx98+P6fL3/5p4/R
pcE9RVFcdFxdKvgc0Cn7cKEoCkX5MfkagKqq+Iz8uu526wjfeSGOHYpjYfm3
f8FHX3v4+9vmUXjE7z9z8fe39cmV44aJHjJoRZFDmqaQs1/4M89SSLOc/DqS
jCNzKqcVEDUtyjdUzSkTTz0TVG0OaTklupN4MEZTqOQYg5vQabzFWKHgT2E0
9+j0N8dSuGQgBylYogrgAvJohUZOISrx5rAeq2AstuT31h6BatiQkXEj8DM0
Jt/CCCm0g//Ix2L1nU2hvAnZ1gZd1UDXdXpoKowXPpOKYYZmsbyU/U7A1HTY
MKsUyQaNN+Gla4I23TArnoEz1WHm/lM6NmEAB6KRRGh/YdCGUGQxBNstBEFA
ji0+j1MqdA7Rasz9R5BZuqAtdZA2C14iH+tTp0TmzgyCTDaWI6slh8yRDOMZ
+XrC7KLCZB2h8xQsJG4ym2W+haajSPA3RZvBHI033ZfSsQlXSyJp0GykIYsk
YilkoTCMwF9NkZQGTpyDa+rIMWsUFRmsZxpoJgrdxCEOX4cZZOEaNFUHNy1k
YwcSc1yLmh9C6s9ZAqhEq4aOuZcgRAGYOruuzyDIqLGD9axMpNk6oNPeHKvs
Ud1AU93GnnHuaOGT2/GOVDdN8wfg25PSRPp0RSOgmWduRzMvRHe8BXlo76gC
RyWJrn/3QSuKLDmuW3kk9XBMz1jcF2T2Jm64C480AmpgjzJi9YkJ1tQgJnCT
/uiD4OFhIebs11VXkeVnvIQo2oLjerANIkjzHsmjZhkOSeSxCiRMIz7yoQoL
PyXnBj4Psl5ohETrSbNZeLbE7gLNRcPdMPE8UoLgZHJXLpEh+arOGUM2lJtM
/fIf5eBpM/ecsE8+NxbjFp/WdZxJgEyrXJWnB+cqTueYM5Yo61TBAy181b0u
qqm+L3nyL2s54lPyiFgxguls5vZIZwT79ySZwYAgHzQXSDlkOSOh+4irNDDs
vx+K1/YYaw/X5eGKzDKxbLAtugytorhfrruu+qzIKXFY6w2sVxsIUxyRh+O1
ivoLqgpP4wQQxxGEQUim743DXtRW98VYKIBG4KUH4avb7N7OJbHyRbO8LPy/
kM85FOcUzz+n4199B1eF9nAPAX9GVd5nz+BbRhkyvVVXzCr4QbGWc5YaEmIX
jfFpNSGSwAPH2cAGHdZYg5G5hCDJeqzJjgl8wX+vSbwl3P60JI4mcvMtjeCw
VzZMDXR/YoEbRf3u/liIcme/LgnbHdImisNWwg5cxSi/5iMUAxkccDdYqe0v
IAsWxE6zsY6IK+mL6GSan0jMMwKhUPg+jQxhv94b511IKKKi+5w8+cLAT5M0
ERvnwDtvAPeYoNOm8G2J/Cd1+R9InvUT8VkPW5DtwSgWaSuxSJutcND02Lz6
kQTE8yqrZaw0i4XSDPv+UDvNH5LPU9Et5J4I8Vkrr2GJvOyJJaRSOOBulIMW
ebiotkfLhxUfRHZNZQ/X2hfb8n6DPke4et7YXu5BK3sq8ZpajaAijcDzQ8p9
hIkM8LLDFYo/6Who2d79DyL0C1RXL8seW0ZqbB1B75FwfyYxXwXDQ0Ik7mLX
WjLX4cGI96cSk8h20L+tk+m7kucQB9X0vCOZcyi59rR5il9IND6tw3pPMqds
h0Un672sfSrB+ECi/ueixwcQ2OVWg3nyDC31SX/l7m8kGB5IsD6SjLusJTeK
rAnuspkbmrR5jszRy/sNaXL/TgLpkQS6bHk96bRsFHkIloHzxIIwZ+3VPsvh
ZxJob0segcNtXQhwGDqWwTooByuJv2o2admWjtHltc+W3pS8VJp5cvq++4uS
Si/8gvXCEdkiksZxj8Nqse2nm9nWRcvAme/6AiPeRfuOvhTpm9+YnnJrkHlg
MIM2kBDnq1vWqZWXOk+IIr1UdDiyeVNiG74cFnmGbJOxdLo57tEryJbjilfV
kbbrEK4NSsZpIMiScSoO6I8fa/Z/g+WZJ/TeeMCkAn1sl1NyT2M55CcFy9Gz
NlmuFjONYZLbZXq3qfVFtYZJUrerbOLb5esPDHmbctnzVtkidYn1USXKXHu/
C1aFt7pUbULJsgyDDvL2pJTXp0v+mk+513mRyv1KyPS6W3lMBF6DQpr0GQny
OMlY3KqwielkDqX6k47ieRKAs3Fgg46VNQZtZIIbJF3FZdrVmdtZPA8IRS62
vOsjgH/QLk48FpJqbRXlp7cCrZWg/bkB2i1AI43maEJ2TZjOcOtoZAdH1bqB
NJVGIzAXJl3KU1o/HGqL+JjleUo5il9nHJUMWGrkeVHewtZGzmIJ0yh6xG8T
BAiRvYQ5fvusT2DpRi3SA3Y7p4RMjsSZ8UXquJvuIvUItzhsHY7Xk53LGqX5
Au/MEKNZIhN2UOjSSirZxYjaqpBbOQ0dmI50MEZTsFDG66bLnMbar0/QkA2J
LBW3DlLukFcq74Tq4g2Ok9LPzuWEfphhjsmaqHEQSXGyX+qopNcMlqjmGK8i
KII5ejpvZ9Z9okOyE5ni9WViwdK2iPLJOuykeFiyDY48y6IrleXGLdI8Cuh/
1gyyxrTA5X70FwZRgmsF0ihJC6UrVsYc+GVeikjW0kkMsijY1Zc+GiXUlwco
sx8LgG+yzA4wIqet57Mtb0g2OnM/PdkvPWCRxB93OhuhosMddtF5sqPP+Qo2
6zV4Yap0Eh2yimECfhSC57jgbwOI07wFLi8RCfVN1iWMjvaZI3NPN/ifcjF9
U+slXaUJ3DGELFqCBeETFg67bQ1P3Ia034EJaHS5MVlE8Qpo7ZzVIM0zAac9
CWtrl7gNIjwTPEsnDZE4jiEMQ2xqpUVb3XAG6UagVRGd64ugs3QGIa6/kNJw