-
Notifications
You must be signed in to change notification settings - Fork 1
/
readdata_bessel.nb
1586 lines (1523 loc) · 69.5 KB
/
readdata_bessel.nb
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(* Content-type: application/vnd.wolfram.mathematica *)
(*** Wolfram Notebook File ***)
(* http://www.wolfram.com/nb *)
(* CreatedBy='Mathematica 9.0' *)
(*CacheID: 234*)
(* Internal cache information:
NotebookFileLineBreakTest
NotebookFileLineBreakTest
NotebookDataPosition[ 157, 7]
NotebookDataLength[ 70937, 1577]
NotebookOptionsPosition[ 68745, 1500]
NotebookOutlinePosition[ 69129, 1517]
CellTagsIndexPosition[ 69086, 1514]
WindowFrame->Normal*)
(* Beginning of Notebook Content *)
Notebook[{
Cell[BoxData[
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}]], "Input",
CellChangeTimes->{{3.6015105933632*^9, 3.601510599971217*^9}}],
Cell[BoxData[
RowBox[{"SetOptions", "[",
RowBox[{
RowBox[{"EvaluationNotebook", "[", "]"}], ",",
RowBox[{"Background", "\[Rule]", "LightGray"}]}], "]"}]], "Input",
CellChangeTimes->{{3.602775854210491*^9, 3.602775858223731*^9}, {
3.612713421177815*^9, 3.61271342268007*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{
"SetDirectory", "[",
"\"\</Users/spencerbryngelson/Desktop/Fortran/EV_spectral/D\>\"", "]"}],
";"}]], "Input",
CellChangeTimes->{{3.6020034886850967`*^9, 3.602003488829173*^9},
3.602004159757442*^9, {3.613055331984881*^9, 3.6130553393104057`*^9}, {
3.613600811603291*^9, 3.6136008198285522`*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"data", "=",
RowBox[{
RowBox[{
RowBox[{"Import", "[",
RowBox[{"#", ",", "\"\<Table\>\""}], "]"}], "&"}], "/@",
RowBox[{"FileNames", "[", "\"\<eval*\>\"", "]"}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.6019959505068293`*^9, 3.601995964866021*^9},
3.6020035020850763`*^9, {3.6035396239732637`*^9, 3.603539624778346*^9}, {
3.61360082359266*^9, 3.613600838759972*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"vec", "[", "j", "]"}], "=",
RowBox[{"data", "[",
RowBox[{"[", "j", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}], ";"}]], "Input"],
Cell[BoxData[
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"ReEv", "[", "i", "]"}], "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"vec", "[", "i", "]"}], "[",
RowBox[{"[",
RowBox[{"j", ",", "1"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{"Length", "[",
RowBox[{"vec", "[", "i", "]"}], "]"}]}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.613600867927772*^9, 3.613600869377811*^9}, {
3.613600912448841*^9, 3.61360104377636*^9}, {3.6136011180496883`*^9,
3.613601118132347*^9}, {3.6137458733509293`*^9, 3.613745887169389*^9}}],
Cell[BoxData[
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"ImagEv", "[", "i", "]"}], "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"vec", "[", "i", "]"}], "[",
RowBox[{"[",
RowBox[{"j", ",", "2"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{"Length", "[",
RowBox[{"vec", "[", "i", "]"}], "]"}]}], "}"}]}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.614293673263052*^9, 3.614293678176759*^9}}],
Cell[BoxData[
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"MaxEv", "[", "i", "]"}], "=",
RowBox[{"Max", "[",
RowBox[{"ReEv", "[", "i", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6136010455763273`*^9, 3.6136010789649963`*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ReEv", "[", "i", "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.614293685365635*^9, 3.614293699934071*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{"{",
RowBox[{
RowBox[{"-", "4024.6664450326`"}], ",",
RowBox[{"-", "2268.2186859461`"}], ",",
RowBox[{"-", "740.6087836226`"}], ",",
RowBox[{"-", "586.6734351962`"}], ",",
RowBox[{"-", "345.0331680523`"}], ",",
RowBox[{"-", "299.9975586601`"}], ",",
RowBox[{"-", "230.3569756925`"}], ",",
RowBox[{"-", "189.4207249573`"}], ",",
RowBox[{"-", "148.2370299972`"}], ",",
RowBox[{"-", "1.4457964907`"}], ",",
RowBox[{"-", "7.6178155859`"}], ",",
RowBox[{"-", "18.7217516977`"}], ",",
RowBox[{"-", "34.7600711322`"}], ",",
RowBox[{"-", "55.733074838`"}], ",",
RowBox[{"-", "81.6407667135`"}], ",",
RowBox[{"-", "112.4844966961`"}]}], "}"}], "}"}]], "Output",
CellChangeTimes->{{3.614293688450055*^9, 3.614293700356346*^9}, {
3.614296455666408*^9, 3.614296466417626*^9}, 3.614297430627797*^9,
3.614299490874997*^9, 3.614300035769973*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ReEv", "[", "i", "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}], ",",
RowBox[{"PlotRange", "\[Rule]", "All"}]}], "]"}]], "Input",
CellChangeTimes->{{3.613601081912677*^9, 3.613601098098263*^9}, {
3.6136025747379627`*^9, 3.613602577775074*^9}, {3.6136056958497868`*^9,
3.613605697176824*^9}, {3.614293712535922*^9, 3.614293721885186*^9}}],
Cell[BoxData[
GraphicsBox[{{},
{RGBColor[0.24720000000000014`, 0.24, 0.6],
PointBox[{{1., -4024.6664450326}, {2., -2268.2186859461}, {
3., -740.6087836226}, {4., -586.6734351962}, {5., -345.0331680523}, {
6., -299.9975586601}, {7., -230.3569756925}, {8., -189.4207249573}, {
9., -148.2370299972}, {10., -1.4457964907}, {11., -7.6178155859}, {
12., -18.7217516977}, {13., -34.7600711322}, {14., -55.733074838}, {
15., -81.6407667135}, {16., -112.4844966961}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{1., -4024.6664450326},
ImageSize->{521.05078125, Automatic},
Method->{},
PlotRangeClipping->True]], "Output",
CellChangeTimes->{{3.613601098700533*^9, 3.613601121718539*^9},
3.6136022633717422`*^9, 3.6136022972232227`*^9, 3.613602343178526*^9,
3.6136023896484127`*^9, {3.613602562511588*^9, 3.6136025784143953`*^9},
3.6136055619668493`*^9, 3.613605599653985*^9, 3.613605697477702*^9,
3.6136059184466352`*^9, {3.6136059513330917`*^9, 3.613605969650407*^9},
3.613739565991626*^9, 3.61374575977744*^9, 3.613745802014702*^9, {
3.613745838967976*^9, 3.613745890370758*^9}, 3.614293627230095*^9,
3.614293722304097*^9, 3.6142964674667587`*^9, 3.614297430679121*^9,
3.614299490911289*^9, 3.614300035822953*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"SetDirectory", "[",
"\"\</Users/spencerbryngelson/Desktop/Fortran/EV_Spectral/V\>\"",
"]"}]], "Input",
CellChangeTimes->{{3.6020034886850967`*^9, 3.602003488829173*^9},
3.602004159757442*^9, {3.61399918924971*^9, 3.613999200377099*^9}}],
Cell[BoxData["\<\"/Users/spencerbryngelson/Desktop/Fortran/EV_spectral/V\"\>"]\
, "Output",
CellChangeTimes->{3.613999200915125*^9, 3.61429362726301*^9,
3.614293892899753*^9, 3.614296492469874*^9, 3.614297192725423*^9,
3.614297430728039*^9, 3.61429949095767*^9, 3.614300035870152*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"ClearAll", "[", "\"\<Global`*\>\"", "]"}]], "Input",
CellChangeTimes->{{3.60200366768596*^9, 3.602003680652975*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"data", "=",
RowBox[{
RowBox[{
RowBox[{"Import", "[",
RowBox[{"#", ",", "\"\<Table\>\""}], "]"}], "&"}], "/@",
RowBox[{"FileNames", "[", "\"\<x.*\>\"", "]"}]}]}], ";"}]], "Input",
CellChangeTimes->{{3.6019959505068293`*^9, 3.601995964866021*^9},
3.6020035020850763`*^9, {3.6035396239732637`*^9, 3.603539624778346*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Length", "[", "data", "]"}]], "Input",
CellChangeTimes->{{3.614296484447538*^9, 3.614296486302423*^9}}],
Cell[BoxData["16"], "Output",
CellChangeTimes->{{3.6142964867228937`*^9, 3.6142964943510838`*^9},
3.614297194742057*^9, 3.614297431094688*^9, 3.61429949135855*^9,
3.61430003622029*^9}]
}, Open ]],
Cell[BoxData[{
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"vec", "[", "j", "]"}], "=",
RowBox[{"data", "[",
RowBox[{"[", "j", "]"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"realvec", "[", "i", "]"}], "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"vec", "[", "i", "]"}], "[",
RowBox[{"[",
RowBox[{"j", ",", "1"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{
RowBox[{"Length", "[", "data", "]"}], "+", "2"}]}], "}"}]}],
"]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}],
";"}], "\[IndentingNewLine]",
RowBox[{
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"imvec", "[", "i", "]"}], "=",
RowBox[{"Table", "[",
RowBox[{
RowBox[{
RowBox[{"vec", "[", "i", "]"}], "[",
RowBox[{"[",
RowBox[{"j", ",", "2"}], "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"j", ",", "1", ",",
RowBox[{
RowBox[{"Length", "[", "data", "]"}], "+", "2"}]}], "}"}]}],
"]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}], ";"}]}], "Input",\
CellChangeTimes->{{3.602003518395018*^9, 3.602003623383626*^9}, {
3.602003655011269*^9, 3.6020036853292217`*^9}, {3.602003748230339*^9,
3.602003754582299*^9}, {3.602004107465618*^9, 3.6020041082098*^9}, {
3.602004168254821*^9, 3.602004173061843*^9}, {3.61400012994729*^9,
3.614000131550071*^9}, {3.614293900585936*^9, 3.614293928550939*^9}, {
3.614294915337042*^9, 3.61429491547645*^9}, {3.614294989689795*^9,
3.6142950023856916`*^9}, {3.614297231251536*^9, 3.614297241106876*^9}, {
3.614300501692718*^9, 3.614300503619062*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Length", "[", "data", "]"}]], "Input",
CellChangeTimes->{{3.614300432618067*^9, 3.614300435172914*^9}}],
Cell[BoxData["16"], "Output",
CellChangeTimes->{3.614300435590317*^9, 3.614300508675458*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{
RowBox[{
RowBox[{"Y", "[", "i_", "]"}], ":=", " ",
RowBox[{"Cos", "[",
RowBox[{"i", " ",
RowBox[{"Pi", "/",
RowBox[{"(",
RowBox[{
RowBox[{"Length", "[", "data", "]"}], "+", "1"}], ")"}]}]}], "]"}]}],
";"}]], "Input",
CellChangeTimes->{{3.614295101082118*^9, 3.614295120815311*^9}, {
3.614295189165415*^9, 3.614295189276491*^9}, {3.614295316724997*^9,
3.6142953213888063`*^9}, {3.614297565082254*^9, 3.6142975770940332`*^9}, {
3.614297612797146*^9, 3.614297616492873*^9}, {3.6143004724490433`*^9,
3.614300474345201*^9}}],
Cell[BoxData[
RowBox[{
RowBox[{"xs", "=",
RowBox[{"Sort", "[",
RowBox[{"Table", "[",
RowBox[{
RowBox[{"N", "[",
RowBox[{"Y", "[", "i", "]"}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "0", ",",
RowBox[{
RowBox[{"Length", "[", "data", "]"}], "+", "1"}]}], "}"}]}], "]"}],
"]"}]}], ";"}]], "Input",
CellChangeTimes->{{3.6071550560015583`*^9, 3.607155082773835*^9}, {
3.60761197660712*^9, 3.607611976905512*^9}, {3.6076265649357653`*^9,
3.6076265650806847`*^9}, 3.607626676433488*^9, {3.6076271352590446`*^9,
3.607627138305655*^9}, {3.607627241614792*^9, 3.60762727301119*^9}, {
3.607627304210142*^9, 3.607627304398478*^9}, {3.6076291427589912`*^9,
3.607629171758952*^9}, {3.608556405601776*^9, 3.608556405693892*^9}, {
3.608556578621533*^9, 3.608556583115334*^9}, {3.611788520361864*^9,
3.611788523299622*^9}, {3.61429512798449*^9, 3.614295142148048*^9}, {
3.614295174710649*^9, 3.614295174860067*^9}, {3.614295269707515*^9,
3.61429527119792*^9}, {3.614295302747027*^9, 3.6142953132975483`*^9}, {
3.614295521516459*^9, 3.614295524361197*^9}, {3.614297263103868*^9,
3.61429728799391*^9}, {3.6142975794343967`*^9, 3.614297581882217*^9}, {
3.614297622903277*^9, 3.6142976230094137`*^9}, {3.614299531218543*^9,
3.614299534277318*^9}, {3.61430047888168*^9, 3.614300479119416*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Length", "[", "xs", "]"}]], "Input",
CellChangeTimes->{{3.614297595839778*^9, 3.614297601467371*^9}}],
Cell[BoxData["18"], "Output",
CellChangeTimes->{{3.614297601897213*^9, 3.614297624246498*^9},
3.614299491490896*^9, 3.614300036352119*^9, 3.614300482390367*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"xs", "+", "1"}]], "Input",
CellChangeTimes->{{3.614297626158584*^9, 3.614297626259137*^9}, {
3.614300176999528*^9, 3.614300177238698*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
"0.`", ",", "0.02185239926619431`", ",", "0.08645454235739913`", ",",
"0.19098300562505255`", ",", "0.33086939364114176`", ",", "0.5`", ",",
"0.6909830056250525`", ",", "0.8954715367323466`", ",",
"1.1045284632676535`", ",", "1.3090169943749475`", ",", "1.5`", ",",
"1.6691306063588582`", ",", "1.8090169943749475`", ",",
"1.9135454576426008`", ",", "1.9781476007338057`", ",", "2.`"}],
"}"}]], "Output",
CellChangeTimes->{3.614297626444257*^9, 3.614299491608247*^9,
3.6143000363870707`*^9, 3.614300177531353*^9}]
}, Open ]],
Cell[BoxData[
RowBox[{"Do", "[",
RowBox[{
RowBox[{
RowBox[{"RealPairs", "[", "i", "]"}], "=",
RowBox[{"Thread", "[",
RowBox[{"{",
RowBox[{
RowBox[{"xs", "+", "1"}], ",",
RowBox[{"realvec", "[", "i", "]"}]}], "}"}], "]"}]}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.614295398439939*^9, 3.614295427443529*^9}, {
3.6142976541836243`*^9, 3.61429765446059*^9}}],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Table", "[",
RowBox[{
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"RealPairs", "[", "i", "]"}], ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}], ",",
RowBox[{"{",
RowBox[{"i", ",", "1", ",",
RowBox[{"Length", "[", "data", "]"}]}], "}"}]}], "]"}]], "Input",
CellChangeTimes->{{3.6143000914224377`*^9, 3.614300108758336*^9}}],
Cell[BoxData[
RowBox[{"{",
RowBox[{
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 0.0528546457}, {0.017026900316098215`, 0.0299390959}, {
0.06752777059564419, -0.0075913533}, {0.14978286427038578`,
0.0027370836}, {0.2609910827793409, -0.00152608}, {0.3973653636207437,
0.0011041007}, {0.5542616442234618, -0.0009445349}, {
0.7263370099279172, 0.0009190499}, {
0.907731640536698, -0.0010020126}, {1.092268359463302, 0.0012217369}, {
1.2736629900720828`, -0.0016798813}, {1.4457383557765382`,
0.0026580147}, {1.6026346363792563`, -0.0050271335}, {
1.739008917220659, 0.0121516886}, {
1.8502171357296142`, -0.0414776863}, {1.9324722294043557`,
0.2075343228}, {1.982973099683902, -1.}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.03079536665, 0.03791992175}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.0013743057680000001`,
0.0013743057680000001`}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., -1.}, {0.017026900316098215`, -0.7801273393}, {
0.06752777059564419, 0.1512778616}, {
0.14978286427038578`, -0.0247890892}, {0.2609910827793409,
0.0055730387}, {0.3973653636207437, -0.0018511129}, {
0.5542616442234618, 0.0008392474}, {
0.7263370099279172, -0.0004773188}, {0.907731640536698, 0.000322032}, {
1.092268359463302, -0.0002493795}, {1.2736629900720828`,
0.0002176602}, {1.4457383557765382`, -0.0002120883}, {
1.6026346363792563`, 0.0002286842}, {
1.739008917220659, -0.0002619416}, {1.8502171357296142`,
0.0002282179}, {1.9324722294043557`, 0.0006004326}, {
1.982973099683902, -0.0044918896}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.0121303729, 0.008238915900000001}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.00040738577600000006`,
0.00040738577600000006`}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 0.2399819137}, {0.017026900316098215`, 0.2389086351}, {
0.06752777059564419, 0.0541423938}, {
0.14978286427038578`, -0.0663388485}, {0.2609910827793409,
0.0360196395}, {0.3973653636207437, -0.0208358663}, {
0.5542616442234618, 0.0150991477}, {
0.7263370099279172, -0.0136209802}, {0.907731640536698,
0.0148003103}, {1.092268359463302, -0.019064599}, {1.2736629900720828`,
0.0291941868}, {1.4457383557765382`, -0.0537888278}, {
1.6026346363792563`, 0.1192568755}, {
1.739008917220659, -0.3012772601}, {1.8502171357296142`,
0.7232191634}, {1.9324722294043557`, -1.}, {
1.982973099683902, -0.5530546847}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.34473243449999996`, 0.39765046149999994`}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.014847657919999997`,
0.014847657919999997`}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 1.}, {0.017026900316098215`, 0.973451782}, {
0.06752777059564419, 0.4015116334}, {
0.14978286427038578`, -0.344264534}, {0.2609910827793409,
0.1338565346}, {0.3973653636207437, -0.0462099263}, {
0.5542616442234618, 0.0175392388}, {
0.7263370099279172, -0.0079489665}, {0.907731640536698,
0.0043741979}, {1.092268359463302, -0.0028848989}, {
1.2736629900720828`, 0.0022208317}, {
1.4457383557765382`, -0.0018947114}, {1.6026346363792563`,
0.0015135013}, {1.739008917220659, -0.000154178}, {
1.8502171357296142`, -0.0041275218}, {1.9324722294043557`,
0.0091568413}, {1.982973099683902, 0.0015268515}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.344264534, 0.34083261919999996`}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.013701943064, 0.013701943064}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., -1.}, {0.017026900316098215`, -0.9582221452}, {
0.06752777059564419, -0.6752807134}, {0.14978286427038578`,
0.2034126063}, {0.2609910827793409, 0.1933952177}, {
0.3973653636207437, -0.233681813}, {0.5542616442234618,
0.1877873726}, {0.7263370099279172, -0.1556899244}, {0.907731640536698,
0.1516824608}, {1.092268359463302, -0.1788047989}, {
1.2736629900720828`, 0.2494005808}, {
1.4457383557765382`, -0.3880207251}, {1.6026346363792563`,
0.6022352516}, {1.739008917220659, -0.7353478546}, {
1.8502171357296142`, 0.2529155628}, {1.9324722294043557`,
0.7481899954}, {1.982973099683902, 0.209670635}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-1., 0.7481899954}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.034963799908, 0.034963799908}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 1.}, {0.017026900316098215`, 0.971351111}, {
0.06752777059564419, 0.699763378}, {
0.14978286427038578`, -0.1057660265}, {
0.2609910827793409, -0.2984051397}, {0.3973653636207437,
0.2678369035}, {0.5542616442234618, -0.1614527793}, {
0.7263370099279172, 0.0896436373}, {0.907731640536698, -0.05053241}, {
1.092268359463302, 0.028451115}, {
1.2736629900720828`, -0.0122777803}, {
1.4457383557765382`, -0.0058970183}, {1.6026346363792563`,
0.0309820716}, {1.739008917220659, -0.0529857289}, {
1.8502171357296142`, 0.0269781757}, {1.9324722294043557`,
0.0462097508}, {1.982973099683902, 0.0162693256}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.2984051397, 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.025968102794, 0.025968102794}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 1.}, {0.017026900316098215`, 0.9860065796}, {
0.06752777059564419, 0.7494585884}, {0.14978286427038578`,
0.0723418654}, {0.2609910827793409, -0.401931434}, {0.3973653636207437,
0.161912668}, {0.5542616442234618, 0.0646836236}, {
0.7263370099279172, -0.1704791325}, {0.907731640536698,
0.2090791448}, {1.092268359463302, -0.2217894365}, {
1.2736629900720828`, 0.2166108043}, {
1.4457383557765382`, -0.1708865451}, {1.6026346363792563`,
0.0419436633}, {1.739008917220659, 0.1481375924}, {
1.8502171357296142`, -0.1458088306}, {
1.9324722294043557`, -0.1563506591}, {
1.982973099683902, -0.0504903616}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.401931434, 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.02803862868, 0.02803862868}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 1.}, {0.017026900316098215`, 0.9876228514}, {
0.06752777059564419, 0.7930159741}, {0.14978286427038578`,
0.1899386692}, {0.2609910827793409, -0.3930899707}, {
0.3973653636207437, -0.014264339}, {0.5542616442234618,
0.2430861682}, {0.7263370099279172, -0.2416042159}, {0.907731640536698,
0.142029009}, {1.092268359463302, -0.0190668674}, {
1.2736629900720828`, -0.0964423861}, {1.4457383557765382`,
0.1662481976}, {1.6026346363792563`, -0.1180784738}, {
1.739008917220659, -0.068886104}, {1.8502171357296142`,
0.1345708398}, {1.9324722294043557`, 0.119452365}, {1.982973099683902,
0.0340889789}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.3930899707, 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.027861799414, 0.027861799414}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 1.}, {0.017026900316098215`, 0.9892767957}, {
0.06752777059564419, 0.8380117054}, {0.14978286427038578`,
0.3262885182}, {0.2609910827793409, -0.3143645299}, {
0.3973653636207437, -0.228713246}, {0.5542616442234618,
0.2889032187}, {0.7263370099279172, -0.0499573261}, {
0.907731640536698, -0.1627166316}, {1.092268359463302, 0.2193172314}, {
1.2736629900720828`, -0.1112503002}, {
1.4457383557765382`, -0.0857994155}, {1.6026346363792563`,
0.1797742885}, {1.739008917220659, 0.00612419}, {
1.8502171357296142`, -0.1630435267}, {
1.9324722294043557`, -0.1208807578}, {
1.982973099683902, -0.0332823427}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.3143645299, 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.026287290598, 0.026287290598}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., -1.}, {0.017026900316098215`, -0.9998952131}, {
0.06752777059564419, -0.9983524711}, {
0.14978286427038578`, -0.9919073472}, {
0.2609910827793409, -0.9755305362}, {
0.3973653636207437, -0.9437366342}, {
0.5542616442234618, -0.8920053373}, {
0.7263370099279172, -0.818212088}, {
0.907731640536698, -0.7236290527}, {
1.092268359463302, -0.6130937553}, {
1.2736629900720828`, -0.4942030024}, {
1.4457383557765382`, -0.3757746241}, {
1.6026346363792563`, -0.2661209587}, {
1.739008917220659, -0.1717220492}, {
1.8502171357296142`, -0.0966606873}, {
1.9324722294043557`, -0.0428337857}, {
1.982973099683902, -0.0106734511}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, -1.},
Method->{},
PlotRange->{{0, 2.}, {-1., 0}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.02, 0.02}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., -1.}, {0.017026900316098215`, -0.9994479458}, {
0.06752777059564419, -0.9913345267}, {
0.14978286427038578`, -0.9577279772}, {
0.2609910827793409, -0.8744225169}, {
0.3973653636207437, -0.7211537657}, {
0.5542616442234618, -0.4951499513}, {
0.7263370099279172, -0.2211702194}, {0.907731640536698,
0.0510519685}, {1.092268359463302, 0.264996831}, {1.2736629900720828`,
0.3821883309}, {1.4457383557765382`, 0.397772853}, {
1.6026346363792563`, 0.3374451099}, {1.739008917220659, 0.240505161}, {
1.8502171357296142`, 0.1420840601}, {1.9324722294043557`,
0.064140798}, {1.982973099683902, 0.0160532603}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-1., 0.397772853}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.02795545706, 0.02795545706}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 1.}, {0.017026900316098215`, 0.9986435295}, {
0.06752777059564419, 0.9787708131}, {0.14978286427038578`,
0.8977193846}, {0.2609910827793409, 0.7057138853}, {0.3973653636207437,
0.3867971094}, {0.5542616442234618, 0.0034366951}, {
0.7263370099279172, -0.3045745592}, {
0.907731640536698, -0.4009229509}, {
1.092268359463302, -0.2619771644}, {1.2736629900720828`, -0.0031028843}
, {1.4457383557765382`, 0.2143031474}, {1.6026346363792563`,
0.2991229371}, {1.739008917220659, 0.2629583153}, {1.8502171357296142`,
0.1703257114}, {1.9324722294043557`, 0.0795406292}, {
1.982973099683902, 0.0200661789}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.4009229509, 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.028018459018000003`,
0.028018459018000003`}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 1.}, {0.017026900316098215`, 0.9974822191}, {
0.06752777059564419, 0.9607643569}, {0.14978286427038578`,
0.8143392372}, {0.2609910827793409, 0.4901106596}, {0.3973653636207437,
0.0326160371}, {0.5542616442234618, -0.3369776282}, {
0.7263370099279172, -0.36400086}, {0.907731640536698, -0.0578848186}, {
1.092268359463302, 0.2503163767}, {1.2736629900720828`,
0.2650820634}, {1.4457383557765382`, 0.0354540476}, {
1.6026346363792563`, -0.1853919609}, {
1.739008917220659, -0.2489217162}, {
1.8502171357296142`, -0.1867011924}, {
1.9324722294043557`, -0.0916796974}, {
1.982973099683902, -0.0233964183}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.36400086, 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.0272800172, 0.0272800172}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 1.}, {0.017026900316098215`, 0.9959647681}, {
0.06752777059564419, 0.937466118}, {0.14978286427038578`,
0.7110047506}, {0.2609910827793409, 0.253715648}, {
0.3973653636207437, -0.2484903151}, {
0.5542616442234618, -0.3845059578}, {
0.7263370099279172, -0.0334671634}, {0.907731640536698,
0.2914890204}, {1.092268359463302, 0.1339107294}, {
1.2736629900720828`, -0.1952883652}, {
1.4457383557765382`, -0.2041783897}, {1.6026346363792563`,
0.0396949135}, {1.739008917220659, 0.2056629593}, {1.8502171357296142`,
0.1930690156}, {1.9324722294043557`, 0.101493747}, {1.982973099683902,
0.0262963343}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.3845059578, 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.027690119156000004`,
0.027690119156000004`}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 1.}, {0.017026900316098215`, 0.9940901868}, {
0.06752777059564419, 0.9090754019}, {0.14978286427038578`,
0.5919242835}, {0.2609910827793409, 0.0244417353}, {
0.3973653636207437, -0.3908377299}, {
0.5542616442234618, -0.1749533638}, {0.7263370099279172,
0.2691926268}, {0.907731640536698, 0.1217468746}, {
1.092268359463302, -0.2381237676}, {
1.2736629900720828`, -0.0657740591}, {1.4457383557765382`,
0.2109333689}, {1.6026346363792563`, 0.0912731266}, {
1.739008917220659, -0.1418607785}, {
1.8502171357296142`, -0.1905310674}, {
1.9324722294043557`, -0.1094244405}, {
1.982973099683902, -0.0288938359}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.3908377299, 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.027816754598, 0.027816754598}}], ",",
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., -1.}, {0.017026900316098215`, -0.9918215375}, {
0.06752777059564419, -0.8758967647}, {
0.14978286427038578`, -0.4618798407}, {0.2609910827793409,
0.1717142591}, {0.3973653636207437, 0.3745935965}, {
0.5542616442234618, -0.1156716292}, {
0.7263370099279172, -0.233913676}, {0.907731640536698, 0.2126992332}, {
1.092268359463302, 0.0481976226}, {
1.2736629900720828`, -0.2146180236}, {1.4457383557765382`,
0.0797623488}, {1.6026346363792563`, 0.1701392785}, {
1.739008917220659, -0.0676460857}, {
1.8502171357296142`, -0.1800438079}, {
1.9324722294043557`, -0.1157145122}, {
1.982973099683902, -0.0312491115}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-1., 0.3745935965}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.02749187193, 0.02749187193}}]}],
"}"}]], "Output",
CellChangeTimes->{3.614300109569439*^9, 3.6143005125264597`*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"l1", "=",
RowBox[{"ListPlot", "[",
RowBox[{
RowBox[{"RealPairs", "[", "12", "]"}], ",",
RowBox[{"Joined", "\[Rule]", "True"}], ",",
RowBox[{"PlotStyle", "\[Rule]", "Red"}]}], "]"}]}]], "Input",
CellChangeTimes->{{3.614297525667398*^9, 3.614297537180842*^9}, {
3.614297660744845*^9, 3.614297664051375*^9}, {3.614299543906431*^9,
3.614299544002874*^9}, {3.614299583214576*^9, 3.6142995891672373`*^9}, {
3.614300060780499*^9, 3.6143000701618967`*^9}, {3.614300121120619*^9,
3.614300129274625*^9}}],
Cell[BoxData[
GraphicsBox[{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 1.}, {0.017026900316098215`, 0.9986435295}, {
0.06752777059564419, 0.9787708131}, {0.14978286427038578`,
0.8977193846}, {0.2609910827793409, 0.7057138853}, {0.3973653636207437,
0.3867971094}, {0.5542616442234618, 0.0034366951}, {
0.7263370099279172, -0.3045745592}, {0.907731640536698, -0.4009229509}, {
1.092268359463302, -0.2619771644}, {
1.2736629900720828`, -0.0031028843}, {1.4457383557765382`,
0.2143031474}, {1.6026346363792563`, 0.2991229371}, {1.739008917220659,
0.2629583153}, {1.8502171357296142`, 0.1703257114}, {1.9324722294043557`,
0.0795406292}, {1.982973099683902, 0.0200661789}, {2., 0.}}]}, {}},
AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948],
Axes->True,
AxesLabel->{None, None},
AxesOrigin->{0, 0.},
Method->{},
PlotRange->{{0, 2.}, {-0.4009229509, 1.}},
PlotRangeClipping->True,
PlotRangePadding->{{0.04, 0.04}, {0.028018459018000003`,
0.028018459018000003`}}]], "Output",
CellChangeTimes->{
3.614297537619875*^9, {3.614297632094943*^9, 3.614297664247888*^9},
3.6142994917420073`*^9, {3.6142995237276907`*^9, 3.614299544295348*^9},
3.614299589400598*^9, {3.61430003665553*^9, 3.614300070440157*^9}, {
3.614300122044219*^9, 3.614300129511735*^9}, 3.614300516210094*^9}]
}, Open ]],
Cell[CellGroupData[{
Cell[BoxData[
RowBox[{"Show", "[",
RowBox[{"l1", ",", "p2"}], "]"}]], "Input",
CellChangeTimes->{{3.614299590598219*^9, 3.6142995928641777`*^9}}],
Cell[BoxData[
GraphicsBox[{{{},
{RGBColor[1, 0, 0],
LineBox[{{0., 1.}, {0.017026900316098215`, 0.9986435295}, {
0.06752777059564419, 0.9787708131}, {0.14978286427038578`,
0.8977193846}, {0.2609910827793409, 0.7057138853}, {0.3973653636207437,
0.3867971094}, {0.5542616442234618, 0.0034366951}, {
0.7263370099279172, -0.3045745592}, {
0.907731640536698, -0.4009229509}, {1.092268359463302, -0.2619771644}, {
1.2736629900720828`, -0.0031028843}, {1.4457383557765382`,
0.2143031474}, {1.6026346363792563`, 0.2991229371}, {1.739008917220659,
0.2629583153}, {1.8502171357296142`, 0.1703257114}, {
1.9324722294043557`, 0.0795406292}, {1.982973099683902, 0.0200661789}, {
2., 0.}}]}, {}}, {{}, {},
{Hue[0.67, 0.6, 0.6], LineBox[CompressedData["
1:eJwV13c81P8fAHCrEmU2zK8RQkjaKi9RRiR7JDMaEhlJJCUhQiSVkJDMEJJR
b9nbubOuUIkzblk5d9bv87t/7vF8PO5x7/f7Nd5DxtXb3J2DjY1tgZ2N7f/f
59yneuum3bWqN/7/oQOXrtitX6JngJV902QV88G3r1LLRC1hXX/5+BzmcQm5
h3cUHOHHt6z6UcxGXYOf0kTdwMQrYKoRs9xTyfcbUtehzfBuQRbm1XOXX7oo
eIEDoZI3GPNMeF+jS7IPNItrbzXCbOPG+Joo6g/29bLZwpgbdcUqG1IDYNs/
3+G+dTqo7zlVsih1F+xu6X2Kw5zK4ZwnnxUMRqEV8qcxc4+FZVor3AePlR9H
KGt0qP6N72qwfADlxn0T8Zhvmbqdu5T8EOKuf9dQwTyyP1I3VjQczD5wfjBZ
pUPSW5E6efvHkHHvfXffCh3O8eef/JYaARoRfUkWmD/TOg/TpZ5AT3X8miaL
Dp6Ojp8iXaLBmDckI4tJB9luupp0Vgy0/6ga48IcVySkaKYQB0EX2fRKGXQ4
K5mdPX01HnrTQ6+uLtHhfnOKwHfLZ3Au+riSNuZDR1Ri7ZITYOG5W1zpIh0y
dl6IiBZNgotb7CZPzNEhuOtlo3V1EtRoOggZz9LB+vFvjj32L2ArifLLkk7H
4uQTWpOaDPwPt7iZUukQ2JcUSJF6Dd8fKYjRp+hg8XTk85e612Br63O5cZIO
amcU/oW7pMCLlBPmiSQsn2WVPpJZb6C5fllGZJwOZs9/eJgopEPvU+PkjlE6
qBjtyRNrSYf1ycrdV0aweHN6TpKuvoWGsOM6zJ90cKpaL0WWGTCvEJy0lUiH
nUrP1GyT38HC7msn8Xg6POQu2/tENBssq6p2cjXRQVk/IerTrWwQ6KhQYG+g
A/6x9/TPlmwoEN+T+a8Oqx9OlQK1gPfg/TX3Z2MtHZrXstX68DkgIhzhs1qG
rXch+bDU0zxIvCH/D5dBh4oDt5MN/uaBcH+2yNl0OjjesmD4aOaD6sGIipI3
dCim8lc1TuXDgdvZTl7JdDCfijrpcbYQRmyinj+KocOrkSDdivWPYPmX984u
fzqclrDLHrUqhstEsc8cPli9Xjy6ibuoGKK+zD8g3aTDf5S7l4tUS+CgDT9K
ukoH7+tH5NmGS8Ccosn+9CIdhNyKc98f+wQH9J60k7ToYGv3rnh2rhy2BuyO
tWGnA/2nJU+mWAXAmu/++2s0iHDkdrfQrYAdSj/epDFpUHbZW+xzUgV08BgP
Nc/RgM/r1OPgo58hNxC3ueEPDZrCiBc3h1SCWicEX66jgUah4GYJ7mo4Jb37
/IVAGrSpNTl3qVcD7c8UT6IfDZxLA2vu21WD8ptXDV1eNIj9/OvWn/xqmLxo
oaLuToOpuqKfOedrAIa28r4zo0F6v2Hpgee18C9jb/ghJRrwbjy8pP8fgujN
z8X2E6jw6rqNo4oe5jDp4ZIuKsj1qTgLeiHAudXuUmmlglbe4OWfXxFcoWas
832lQlVeckWlWh3wtct2R+RQgWpBqTXqrgNVVxdx7UAqWOW+7PDbXg8Kk4fs
J3dRQd6MNtUQ0wjiLK6e+6cpIBaqr3n1XSOollf59R+ngEBRRgxPZSPcQFd4
5TUowOK2UDMba4SwJqpUsSwFcHWVfqPHmiDnpfwhb04KBKk/XF+eaAI+CVLT
uwYydPPv2KGm3QJaf1rZJ7XIcKf7OLxabIP3Y4ydH2VmYHe54Cg7ew8Ifvnv
q17nJHwe0+3sOYmH4Zy5YJn5caj3SBO3o/TBqkPQpl9jf+Cfwin+opuDYKB3
sF+mZgQ4mAUC4vI/QOJefdbS0gAc2XD+bPFxGAR1A3BzL3DQGX6ou1n5FxT+
uDM61N0IUs/IzDzab1A+XXmm0rYYyIxfo/3qYyAOc5Lm3akoe6amnS/uL1jL
n8epb/mG+CQ/0MfHx6F201GVhbVWpG39aOTv9DjEOjj0vZFuQ77xTh1jtHGw
3CFdp67bhgbYRT78Xh4HyTtyWlJRbSidFOU4vG0C9vrFDW4XbEdqJR5dhEMT
MDF/p0JJqgOd11UrqA+fgLfX9vhLqXShp9crrmTIkWDCrsUp9REOzWgXRfEq
k+CjsVZM8nMc0hd5nx+wnwS2zT4zj7JwiKMliWasSQIr3EGNYw04dFfOP4B5
gQS0lrs3NnP0oiu/NCLMg0kg9dKj5nBILzptVfKeC0+ClA8NdfXX8ShdJbfF
e5AEjsSP+8UD8WiVM2P6xzAJXi9wXrgSgUdfPsWrlk6SYHZC9FlfJh6pCXhX
OKyR4F15fIXATzyS6FBt+qw4CTciary4DAloSbtg/FroJKSU2U99F+tDtdnk
N3fCJ+EPzxbtRIU+FMatYhHxZBJO2BzNtNboQ3y4wu9ZzyeBOZN+r8awDyk4
fUwf/TAJcmsj+v/u9CHrkFJbS9wkKCV6aO7F96GKqspOkJmCnJz+tNsh/ShI
cvmRicIUaNIqORoi+5H2w2MnHPZNAV8Ex36uxH7UaVCVF3R4CoYjiwdccvrR
+GB1RIXhFDgXxB+I7u5HO5a+au/znYKUlfvpsRIDyF+jsXxXwxRcClZPtSwe
QFcOSWcktE6BP2nmG/7LALI9ci9mW/cUFFzdYqpTP4BOaB5y5SBOAYe0V+W/
vgHEoZPNT6NNQaloum8RcwDFm4V7NIlNg4zT1E0n7UH0wOK3lbb0NGx/G9G7
YDCIfK1Onq6Rn4ajEx/j7poNImu7xd2l6tMweNFc0M51EEm4uDWl6k1D7RsT
8WuPBlH+rTPS/r7TcP+Pl19T/SBK9c3gpd+ZBm2zhlWv9kEU67+6dD1kGo4/
Du3dih9EtwLLu5yipiHeN+Gi8J9BdPSBXLBROjb+JZ0ft9cHUWM814BsOzb+
+japwCND6NfHxpherC93cFm89H4zhHBULorG3hnI+vC0ReHdEKpTOWucpDID
9g57GnpyhlBGftM2m6MzcGHbbklG6RByzWmOHTaeAeUVTdc3LUOIlNYaP3ln
BmJ9CQGas0NoYJh71iBkBs7PKN/n+zeEWsQNTfPDZiAs/6p1H3MI5b5uE7gZ
OwMGOe3BhzmJyONFe8J85gxMjMkUnN9JRNSnnc/XurD/2xJ/dOAIEY12bFt0
JMzAiFhxaosmEXXznLesG5qBWwKuo/laRPQxqmvHo78zcHzj9IqeHhHdCu9+
wc2cAYsnUZ/7LYnIuYFv6fr6DFQkl4lb2xKRGccF6w5OMrSEJrq32hORxoOe
XXF8ZGAM0AvCXIloMRj3UliODCJZu+VMvIlovFpg2V+JDA935vQ4+BJRP9PU
dkCNDN51sdedbhPR5zu9Iq+Pk+Gyycebx4KJKNAP//q/C2TI6PEcOR1BRNc+
CbFCLcnYfkSQ+RNFRHZz5hf/2JFBIq/ayTeGiDS9CWLZbmTYeVeo2+MZEa14
9L1RCiKDQ6JzRtlrIrI84pCgFkoG0h775q9viKiQnRRxMJwM+5uv1dekEZHj
K4bPqTgyxPpo6jx/R0Tfm8QMzDLJUB8tHVWSS0RiCVmnrD+Q4a702mO7fCLy
vaRy0L4QG//GJfelAiKSWzj1n/tnMqx5lXTzFhNRpLTLYmA7GXIiNt95X05E
v8nT0yE9ZMjMOFBIrSCiY5W+v8L6yCAa59WjVElEM+fD25+OkuHX5WpSSBUR
6Ypur0v4SwaVUtnRF9VElDr+oiJ5igyDry+0v6shovPBHzIy5snQxPwR+eIr
EeXoqSe/Z5CB0+PzpZBvRLQuWBWTv0qGt+6mqnaIiGxGTj8sZqeATajvimId
EZXktgeUb6aAbeVMKwXzVn8LzypeCugGxbzM/k5ErjDs8k2AAiIZ+66b1hOR
8ADVuFWMApaRPyXCG4jI812ATpcUBbS5izm2NRJRo+fGUbwcBXZe37oQiVny
WJTqoBIF2GMG6QzMAZyCe4bVKHCsnGfFvomIerpfi/w5SIHRuFe7yjErpsjy
kY5h5+be4DNszUT0wL2Ak3yKAnq0kghtzET1Q0y6DgUOlJ785Y9ZY7WWtqhP
gcK38qZpmKNbzo4zjSkgq3/nZxXmv4ndxHUzCqglnn7Ujvmko00Ppw0FUMsr
wx7ML5R+N3JfokDxkxfqrZhpi9eqt7tQoItgqVmBWa9urljoCgWyWIxryZjf
xgS9332DAmfys7/dwLxszflG4hYWr4nwU4cxm8o+fSZzmwIenC2T89h68qg7
IhSCKJBdkoayMXNUpQXvC6VALtYy5zDbhyv4qIdTgMk1zTaBxaf8QvGVw08o
kJo25OWHeZv4sUuacRT48d5ceAmLtzupzgyeU0Dm0ttZT8zfSg31z7yiQJ0R
79YhLD+7QvAnDdOw9RhNOh7F7G1gr2GSSQH7kKjFaCyfrcLjey0+UOCKkUEn
Hsu3zC9PSdtCCly+Fj7Fhzko/5+QQykFMrvSjQCrl32nt6xfqaGARgnv7D2s
vkryC/YO1VHAV3TPqdu1RHRoh6mZYTMFOy83dTth9Xhy8lX2vl4sPwXNLbxY
/daZnupOHaDAsg370S6svs9W/2FsH6aAhA5aevCZiExilY1mSRTwN/vqj8qI
CL/U7e9CoYDO+ajj5z5h9ersl46fo0DLfop9Swm2/xysnStfxeJv1df8qgjr
P+L5V3eFqIC7V//8VQ4RLenMf5/ZTYUCw9asz9lEFFyYTLaXpEIFPlelJZOI
wkN/aWkpUoH1nLsSpRNRsrzPBIcWFQiHpgX5k7H+jt/J769LBXeGjvH351i+
l6uOTRhQweSYksSVBCLK7eB42mJBBc8rzjGRT4moyidJ4+l1KvwREhdQDiMi
rZ/HLq15UeHaM3Mnn1Aiqj8z8tjLnwoHVw66FtwjovbdCkTTUCq4WHolMgKI
aPhrZejOF1T48dqEZ86DiNh4fnam11Hhk7XXwA1TbL5+oUv8zVTIFRI++dsY
68+RPdIPO6gQ1t/1Qt+QiIRKPP0uD1BBw9PlCP00tv9Yr4sqUqjgu3g4K1OD
iPQzZa6W7qZh78tNjDRBLF+v+BSaJWigaTm9ELudiKTjVsZ/yNDAy5vR5buV
iFh3+125VGgwcd9FUZydiIrMnjjaaNOg1Io5SqIPIWH2Oau1azTo/1WTfbNj
CLExRnYIYff2gIWhY0XNQ4hCaScoYPd67jWVyT/fh1DzULaZaQgNBgv1M5W/
DKG7JbbnsxJocNS3nl0zGzs/nerOGFbT4ELkZZpF0BDqtCridEQ0mDYR5Z70
H0JfjFLqfRtpYEpZv+ftPYQSj/prp3bTwPjIf0+c3YbQWX7Fk/QxGgT9/p3R
cH4IFXyLP/iClw4yPTeeJvw3hO5IOsn+uYS9A/P4Nt/4MohcTdWth13oILBU
jiOUDiKTR+zRg1foYM+Sn9IoGEQK01lzXbewd+oDGl9f2iDqK5+qqw6nQ67K
vcrMsEGkbuzrlFRIBwPysYu3zw2iqaDHqfrYO310Z001P2EAzVjvu/aObRZG
IqyGznUMIOdZYQ4pzlkY/7ved69hABntmTgsxj0L8aHJ95vKBpDsk8g0AaFZ
OMKtLDrzfADhLDs91+RnQV1SOTfcfACpUKx4B8/Pwt00xTyZtn70xdIYRZvO
gmztprUHqB/pftXx07KYhReazucHKvrRxbj9P9/bzsI5s+Y118x+9ER9a4H/
5VlYk6my2hTcj0j+teeE7s4C24XoUj/lfpSxJht9PnsWngqsmyuE9SFh/lnu
RtYsdG2pCLq2i4C40JviPalzwDx8iadcFIduHKohbjWah/AvJWtC9FZUYOia
8W1pHg419O7bC9/RP7KYACl5AeL0T9mffVuGKiz0OZPOLAJXG7X5qEkMCjV4
/LactAjGQs0HNn/KAZmRc0NZj//BJvWw/mPCVaB5NDxJVGMJUsZEOmodGuDS
fz1MdsISGL45JFe/2gp8or4VNf1L8FsxNsxMuA2+C+/0uT20BPVhBxNwSm2g
sNV+ampkCaYlsl+mWbcBfYE00DO1BEUfGg/5FrdBWNt6Wdr6Eri/YqqsObRD
rr+a13FlBqhus2HafOyAi969SgsqDJDr7ie013fAdg//icL9DNBYntZQGewA
X6fqS9KHGdDhRrOv3uiAE+f0jLZoM0CIdPEqp2kndEs5KvZbMcDguPmiNrUT
/rXHjt16yAD8t5z76mLdMMzbf231EQO27J5t3L+vG+qNJeiREQxY1O+b+e9k
Nzzrzl9Jj2HAbWOFr50O3aCMb9nR9YIBkhXVBPeMbuzdwa6vlM+AF9LUjCjZ
HmievF3wB8+AHeyE+EPbcVCo+PXAzX4GTI4GJBfuwMHz61xflgcZoGTrelBC
AgfO5MRG/hEGUF0o8mPKOGDRikdOTTIgLq/iA7cBDvYvTfOnrDBg6FMl6+sD
HLzicvQ3l1sGwV6v11VkHKxf3n24V2EZpJ+wNW3M4cCtAffvgtIyvKllSzq1
jAP1MN0759WWoTikYEcGVy+0bigGGRxbBrfbIp5skr3AYC2Eahkvg62Z0U8V
416wnnsSo+y/DJd7pBoVs3uh1lTXOC9gGe4tNC045fWCbMnqNsW7y+D7Qioh
7mMv0Ly84+TvL8PmT0f58V964THFMkE6ahkeHBmem+vshfJJqZe7UpehW7dQ
LmmhF4RHKzI5GpdBrVw/z04TD3HbQkIqm5fh75N4i34tPPCcOGPr2bYMVCF6
tZ4uHjhe4bcPdC/DSNzeWh5jPMyb0QPziMswoc17bbcDHnBNihdM6cvwcznX
TycED8aLdKVN88uQVOLjIfoQD62ylVzVi8uQ1RG9nRSOBxR6tnoPaxkCAo9Z
OT/Fw8fjrvIMLiY8KQ4gDKXg4WnRm5U0MSYM0FvGhyrwwD3sOmAuyYTvQWRd
nio8hPMol26RZkJ8G0P3QC0egq9+ueIjz4S/lYVyzvV48JDp7z2jzgSaxdjF
0914IF1ILWRqMKGf/KBMqhcPrvcvR348zASLbzZ5CwQ82P2cOylyggld2Sdu
3CPiweAFXy75LBMyLCe1BMfx0NjQH5ZhwAQXMdXAVBIetOdTHayMmLB208xY
choPRy/sE0amTDgV59W4QcVj/WZwP9GeCV8Ty+j6DDxsCnloedyHCeEfymQm
thCgfI7CRH5M8BC3YuZtJYDbFdu3egFMIBy0qXfnJUDjhf0zFsFMICOaYj0f
AcJlR0K9HjOhW+iqMd9OAhx6aSD/L5IJTgepn6J3EWCct7w9OJqJ7QdS29Z3
E+DMv+idT+Kx8eKCX7aJEYCr9VhB1msmKAgniC5KYeOfzDZVTmVCgf2ohKIM
Nn4p/1JJOhN+UOV2Wshi46eQtL9lMWE0S4AUK0cAf35z0pkcJozJ30Vp8gSQ
C/8a05HLhE2FLvHZCgR4dDNpYKiICXah7jteKhJAY2wj2KmECaqKbu1hSgQY
s74hQ/rEhFsxeYHuygTQ0dbxXKhkwvH/VhC/CgHmy4sEg6qZMJLMc3EQc6aS
aCXbVybk2l6lvVAlAIfwLDtfPROe7TrBvaxGgE+R9h+SGrH1HemPe7OfAK6r
zcbiLUxI/8shdESdAEI+GvPv2pgQ+dYpsQVz/UTaS8VOJviNRQuYHiCA78Wt
p4q7mbD4n2JsD2bZHv+xw71MCKgd5dbTIABe93dkLYEJrmIXw8swh30xUtUd
YMLPp4ZsIgex9alW4tuGmDDu6Bzih3nsnWyg6U8m2HRbrTZhTtwVJzk4woQI
vokQ/kPYemOY9Q6/sfo908Vhinl+w+3a+BgTJKN7YyIxZ/rjtt+YYILW9BfR
z5jNp0+UzU1i83MwKfqJmd3xg23gDBPc+pz1lzGX4IXW1ylM6FNqmOI9TABn
/ftZj+lMuKJknLgLs0DttMG2eSzesQNnRDDXqVvREheZ0LmuzS6I+db7uuei
DCbcEfRqZcMsLaZyPIPJhOcGZ95MYv+Pi3s5qrDKBBL/x6AmzA84OcOL1pmQ
Xff6agpm9UAvpUPsLNiRxnS9gvk3hdhdzckCud6Gm0qYn7mc9T+9mQUDPvNR
f7F4aA+UiLZys2A66FFFEubZcxLIhJcFi7jAxZOYM1CkW/92FuSeGtIbxuJt
emhh6yUBFozfKijyxcyW51g8JoSNx8amzIa5mTLo9XYnC7TkZtmDsPw9VTdT
uyTCgtRUcbdpLN/m/u1UEXEW8MxOmZlg3v1Ft6hfkgXN6w2duVi9DK/UeiZK
s2AP538D/6+nTDiicmEPC9hib3prYVZrUSxoVWRB794xm3ysHhd5Mj0e72PB
8Cb+fNw+AlSbiCvrqLHgD8fpRApWz2cHtufVHGTBhaB15U1YvV+amM/5qMWC
9Hj+giqsf2SVPK/cOM0CgtGtH0/3EGDKc0Je8QwLrusuFlph/ea3OJj9zpAF
Ah52Oq1Yf0Zzfs1MsmRBlvg15wNY/5rqH3E1s2GBh1bsj1IRAuyKKZbhu8gC
XbezmxWxfs8UysyIdMLio8MT9E+YAFUykelBHixYtjPaunM7Ae67szkevckC