-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathknapsack.py
48 lines (36 loc) · 1.35 KB
/
knapsack.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
from dataclasses import dataclass
from typing import List, Set
import numpy as np
@dataclass
class Item:
value: int
size: int
np.set_printoptions(formatter={"float": lambda x: "{0:0.3f}".format(x)}) # type: ignore
def construct_array(items: List[Item], capacity: int) -> np.ndarray:
n_items = len(items)
array = np.zeros((n_items + 1, capacity + 1))
for i, item in enumerate(items, start=1):
for cap in range(capacity + 1):
if item.size > cap:
array[i][cap] = array[i - 1][cap]
else:
case1 = array[i - 1][cap]
case2 = array[i - 1][cap - item.size] + item.value
array[i][cap] = max(case1, case2)
return array
def reconstruction(array: np.ndarray, items: List[Item], capacity: int) -> Set[int]:
return_items = set()
for i in range(len(items) - 1, -1, -1):
condition1 = items[i].size <= capacity
condition2 = (
array[i - 1][capacity - items[i].size] + items[i].value
>= array[i - 1][capacity]
)
if condition1 and condition2:
return_items.add(i)
capacity -= items[i].size
return return_items
def knapsack(items: List[Item], capacity: int) -> Set[int]:
array = construct_array(items, capacity)
print(array)
return reconstruction(array, items, capacity)