-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathDESCRIPTION
45 lines (45 loc) · 1.39 KB
/
DESCRIPTION
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Package: proDA
Type: Package
Title: Differential Abundance Analysis of Label-Free Mass Spectrometry Data
Version: 1.17.1
Authors@R: c(person("Constantin", "Ahlmann-Eltze", email = "artjom31415@googlemail.com",
role = c("aut", "cre"), comment = c(ORCID = "0000-0002-3762-068X")),
person("Simon", "Anders", email="s.anders@zmbh.uni-heidelberg.de",
role="ths", comment = c(ORCID = "0000-0003-4868-1805")))
Description: Account for missing values in label-free mass spectrometry data
without imputation. The package implements a probabilistic dropout model that
ensures that the information from observed and missing values are properly
combined. It adds empirical Bayesian priors to increase power to detect
differentially abundant proteins.
License: GPL-3
Encoding: UTF-8
LazyData: false
RoxygenNote: 7.1.0
Suggests:
testthat (>= 2.1.0),
MSnbase,
dplyr,
stringr,
readr,
tidyr,
tibble,
limma,
DEP,
numDeriv,
pheatmap,
knitr,
rmarkdown,
BiocStyle
Imports:
stats,
utils,
methods,
BiocGenerics,
SummarizedExperiment,
S4Vectors,
extraDistr
URL: https://github.com/const-ae/proDA
BugReports: https://github.com/const-ae/proDA/issues
biocViews: Proteomics, MassSpectrometry, DifferentialExpression,
Bayesian, Regression, Software, Normalization, QualityControl
VignetteBuilder: knitr