-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.py
529 lines (480 loc) · 23.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
# -*- encoding: utf-8 -*-
'''
@File : main.py
@Time : 2020/04/01 14:14:38
@Author : Cao Shuai
@Version : 1.0
@Contact : caoshuai@stu.scu.edu.cn
@License : (C)Copyright 2018-2019, MILAB_SCU
@Desc : None
'''
import os
import argparse
import logging
import random
import json
import numpy as np
import torch
import torch.nn.functional as F
import pickle
from collections import defaultdict
from pprint import pprint
from model import FusionBert
from metric import mean_average_precision, mean_reciprocal_rank, accuracy
from util import InputExample, InputFeatures, TrecProcessor, NlpccProcessor, MrpcProcessor, QqpProcessor,LcqmcProcessor, convert_examples_to_features, get_datasets, CmedQAProcess
from torch.utils.data import (DataLoader, RandomSampler, SequentialSampler,
TensorDataset)
from torch.utils.data.distributed import DistributedSampler
from tqdm import tqdm, trange
from pytorch_pretrained_bert.file_utils import PYTORCH_PRETRAINED_BERT_CACHE
from pytorch_pretrained_bert.modeling import BertConfig, WEIGHTS_NAME, CONFIG_NAME
from pytorch_pretrained_bert.tokenization import BertTokenizer
from pytorch_pretrained_bert.optimization import BertAdam, warmup_linear
from sklearn.metrics import f1_score
os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1'
logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s',
datefmt='%m/%d/%Y %H:%M:%S',
level=logging.INFO)
logger = logging.getLogger(__name__)
def main():
parser = argparse.ArgumentParser()
# Required parameters
parser.add_argument("--data_dir",
default=None,
type=str,
required=True,
help="The input data dir. Should contain the .tsv files (or other data files) for the task.")
parser.add_argument("--bert_model", default=None, type=str, required=True,
help="Bert pre-trained model selected in the list: bert-base-uncased, "
"bert-large-uncased, bert-base-cased, bert-large-cased, bert-base-multilingual-uncased, "
"bert-base-multilingual-cased, bert-base-chinese.")
parser.add_argument("--task_name",
default=None,
type=str,
required=True,
help="The name of the task to train.")
parser.add_argument("--output_dir",
default=None,
type=str,
required=True,
help="The output directory where the model predictions and checkpoints will be written.")
# Other parameters
parser.add_argument("--cache_dir",
default="",
type=str,
help="Where do you want to store the pre-trained models downloaded from s3")
parser.add_argument("--max_seq_length",
default=128,
type=int,
help="The maximum total input sequence length after WordPiece tokenization. \n"
"Sequences longer than this will be truncated, and sequences shorter \n"
"than this will be padded.")
parser.add_argument("--do_train",
action='store_true',
help="Whether to run training.")
parser.add_argument("--do_eval",
action='store_true',
help="Whether to run eval on the dev set.")
parser.add_argument("--do_lower_case",
action='store_true',
help="Set this flag if you are using an uncased model.")
parser.add_argument("--train_batch_size",
default=32,
type=int,
help="Total batch size for training.")
parser.add_argument("--eval_batch_size",
default=8,
type=int,
help="Total batch size for eval.")
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=3.0,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
parser.add_argument("--no_cuda",
action='store_true',
help="Whether not to use CUDA when available")
parser.add_argument("--local_rank",
type=int,
default=-1,
help="local_rank for distributed training on gpus")
parser.add_argument('--seed',
type=int,
default=42,
help="random seed for initialization")
parser.add_argument('--gradient_accumulation_steps',
type=int,
default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument('--fp16',
action='store_true',
help="Whether to use 16-bit float precision instead of 32-bit")
parser.add_argument('--loss_scale',
type=float, default=0,
help="Loss scaling to improve fp16 numeric stability. Only used when fp16 set to True.\n"
"0 (default value): dynamic loss scaling.\n"
"Positive power of 2: static loss scaling value.\n")
args = parser.parse_args()
processors = {
"trec": TrecProcessor,
"mrpc": MrpcProcessor,
"qqp": QqpProcessor,
"lcqmc": LcqmcProcessor,
"nlpcc": NlpccProcessor,
"cmedqa": CmedQAProcess
}
num_labels_task = {
"trec": 2,
"mrpc": 2,
"qqp": 2,
"lcqmc": 2,
"nlpcc": 2,
"cmedqa": 2
}
if args.local_rank == -1 or args.no_cuda:
device = torch.device(
"cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu")
n_gpu = torch.cuda.device_count()
else:
torch.cuda.set_device(args.local_rank)
device = torch.device("cuda", args.local_rank)
n_gpu = 1
# Initializes the distributed backend which will take care of sychronizing nodes/GPUs
torch.distributed.init_process_group(backend='nccl')
logger.info("device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format(
device, n_gpu, bool(args.local_rank != -1), args.fp16))
if args.gradient_accumulation_steps < 1:
raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format(
args.gradient_accumulation_steps))
args.train_batch_size = args.train_batch_size // args.gradient_accumulation_steps
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
if n_gpu > 0:
torch.cuda.manual_seed_all(args.seed)
if not args.do_train and not args.do_eval:
raise ValueError(
"At least one of `do_train` or `do_eval` must be True.")
if os.path.exists(args.output_dir) and os.listdir(args.output_dir) and args.do_train:
raise ValueError(
"Output directory ({}) already exists and is not empty.".format(args.output_dir))
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
task_name = args.task_name.lower()
if task_name not in processors:
raise ValueError("Task not found: %s" % (task_name))
processor = processors[task_name](args.data_dir)
num_labels = num_labels_task[task_name]
label_list = processor.get_labels()
tokenizer = BertTokenizer.from_pretrained(
args.bert_model, do_lower_case=args.do_lower_case)
train_examples = None
num_train_optimization_steps = None
if args.do_train:
train_examples = processor.get_train_examples()
num_train_optimization_steps = int(
len(train_examples) / args.train_batch_size / args.gradient_accumulation_steps) * args.num_train_epochs
if args.local_rank != -1:
num_train_optimization_steps = num_train_optimization_steps // torch.distributed.get_world_size()
logger.info("loading train data done.....")
# Prepare model
cache_dir = args.cache_dir if args.cache_dir else os.path.join(
PYTORCH_PRETRAINED_BERT_CACHE, 'distributed_{}'.format(args.local_rank))
config = BertConfig(os.path.join(args.bert_model, 'bert_config.json'))
model = FusionBert(args.bert_model, config)
logger.info("loading model done.....")
if args.fp16:
model.half()
model.to(device)
if args.local_rank != -1:
try:
from apex.parallel import DistributedDataParallel as DDP
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
model = DDP(model)
elif n_gpu > 1:
model = torch.nn.DataParallel(model)
# Prepare optimizer
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'LayerNorm.bias', 'LayerNorm.weight']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(
nd in n for nd in no_decay)], 'weight_decay': 0.01},
{'params': [p for n, p in param_optimizer if any(
nd in n for nd in no_decay)], 'weight_decay': 0.0}
]
if args.fp16:
try:
from apex.optimizers import FP16_Optimizer
from apex.optimizers import FusedAdam
except ImportError:
raise ImportError(
"Please install apex from https://www.github.com/nvidia/apex to use distributed and fp16 training.")
optimizer = FusedAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
bias_correction=False,
max_grad_norm=1.0)
if args.loss_scale == 0:
optimizer = FP16_Optimizer(optimizer, dynamic_loss_scale=True)
else:
optimizer = FP16_Optimizer(
optimizer, static_loss_scale=args.loss_scale)
else:
optimizer = BertAdam(optimizer_grouped_parameters,
lr=args.learning_rate,
warmup=args.warmup_proportion,
t_total=num_train_optimization_steps)
if args.do_train:
logger.info("Start training.....")
train(model, processor,task_name, optimizer, train_examples, label_list, args, tokenizer,
device, n_gpu, num_train_optimization_steps, valid=True)
if args.do_eval and (args.local_rank == -1 or torch.distributed.get_rank() == 0):
if task_name in ['lcpmc', 'mrpc', 'qqp', 'cmedqa']:
eval_dataloader = get_dataloader(processor, args, tokenizer, 'test')
eval(model, eval_dataloader, device)
else:
test_file = os.path.join(args.data_dir, 'test.tsv')
map_eval(test_file, args.max_seq_length, tokenizer, device, model, label_list)
# save model
# Save a trained model and the associated configuration
model_to_save = model.module if hasattr(
model, 'module') else model # Only save the model it-self
output_model_file = os.path.join(args.output_dir, WEIGHTS_NAME)
torch.save(model_to_save.state_dict(), output_model_file)
output_config_file = os.path.join(args.output_dir, CONFIG_NAME)
with open(output_config_file, 'w') as f:
f.write(config.to_json_string())
# Load a trained model and config that you have fine-tuned
# config = BertConfig(output_config_file)
# model = FusionBert(config=config)
# model.load_state_dict(torch.load(output_model_file))
# # model = BertForSequenceClassification.from_pretrained(args.bert_model, num_labels=num_labels)
# model.to(device)
def train(model, processor, task_name, optimizer, train_examples, label_list, args, tokenizer, device, n_gpu, num_train_optimization_steps,valid=False):
# model.train()
global_step = 0
nb_tr_steps = 0
tr_loss = 0
# train_features = convert_examples_to_features(
# train_examples, label_list, args.max_seq_length, tokenizer)
if os.path.exists('./cache_cmed/train_features.pkl'):
with open('./cache_cmed/train_features.pkl', 'rb') as f:
train_features = pickle.load(f)[:50000]
else:
train_features = convert_examples_to_features(
train_examples, label_list, args.max_seq_length, tokenizer)
with open('./cache_cmed/train_features.pkl', 'wb') as f:
pickle.dump(train_features, f)
logger.info("***** Running training *****")
logger.info(" Num examples = %d", len(train_examples))
logger.info(" Batch size = %d", args.train_batch_size)
logger.info(" Num steps = %d", num_train_optimization_steps)
all_input_ids = torch.tensor(
[f.input_ids for f in train_features], dtype=torch.long)
all_input_mask = torch.tensor(
[f.input_mask for f in train_features], dtype=torch.long)
all_segment_ids = torch.tensor(
[f.segment_ids for f in train_features], dtype=torch.long)
all_label_ids = torch.tensor(
[f.label_id for f in train_features], dtype=torch.long)
x_input_ids = torch.tensor(
[f.input_ids_x for f in train_features], dtype=torch.long)
x_input_mask = torch.tensor(
[f.input_mask_x for f in train_features], dtype=torch.long)
x_segment_ids = torch.tensor(
[f.segment_ids_x for f in train_features], dtype=torch.long)
y_input_ids = torch.tensor(
[f.input_ids_y for f in train_features], dtype=torch.long)
y_input_mask = torch.tensor(
[f.input_mask_y for f in train_features], dtype=torch.long)
y_segment_ids = torch.tensor(
[f.segment_ids_y for f in train_features], dtype=torch.long)
train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids,
x_input_ids, x_input_mask, x_segment_ids,
y_input_ids, y_input_mask, y_segment_ids)
if args.local_rank == -1:
train_sampler = RandomSampler(train_data)
else:
train_sampler = DistributedSampler(train_data)
train_dataloader = DataLoader(
train_data, sampler=train_sampler, batch_size=args.train_batch_size)
for _ in trange(int(args.num_train_epochs), desc="Epoch"):
model.train()
tr_loss = 0
nb_tr_examples, nb_tr_steps = 0, 0
for step, batch in enumerate(tqdm(train_dataloader, desc="Iteration")):
batch = tuple(t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids, x_input_ids, x_input_mask, x_segment_ids, y_input_ids, y_input_mask, y_segment_ids = batch
loss = model(x_input_ids, x_input_mask, x_segment_ids,
y_input_ids, y_input_mask, y_segment_ids,
input_ids, segment_ids, input_mask, label_ids)
if n_gpu > 1:
loss = loss.mean() # mean() to average on multi-gpu.
if args.gradient_accumulation_steps > 1:
loss = loss / args.gradient_accumulation_steps
if args.fp16:
optimizer.backward(loss)
else:
loss.backward()
logger.info(loss.item())
tr_loss += loss.item()
nb_tr_examples += input_ids.size(0)
nb_tr_steps += 1
if (step + 1) % args.gradient_accumulation_steps == 0:
if args.fp16:
# modify learning rate with special warm up BERT uses
# if args.fp16 is False, BertAdam is used that handles this automatically
lr_this_step = args.learning_rate * \
warmup_linear(
global_step/num_train_optimization_steps, args.warmup_proportion)
for param_group in optimizer.param_groups:
param_group['lr'] = lr_this_step
optimizer.step()
optimizer.zero_grad()
#global_step += 1
if valid:
logging.info('Start eval the dev set')
if task_name in ['lcqmc', 'mrpc', 'qqp', "cmedqa"]:
eval_dataloader = get_dataloader(processor,args, tokenizer,mode='dev')
eval(model, eval_dataloader, device)
else:
dev_file = os.path.join(args.data_dir, 'dev.tsv')
map_eval(dev_file, args.max_seq_length, tokenizer, device, model, label_list)
def eval(model, eval_dataloader, device):
model.eval()
eval_accuracy = 0.
#eval_map, eval_accuracy, eval_mrr = 0., 0., 0.
nb_eval_steps, nb_eval_examples = 0, 0
preds, labels = [],[]
for batch in tqdm(eval_dataloader, desc="Evaluating"):
batch = (t.to(device) for t in batch)
input_ids, input_mask, segment_ids, label_ids, x_input_ids, x_input_mask, x_segment_ids, y_input_ids, y_input_mask, y_segment_ids = batch
with torch.no_grad():
# tmp_eval_loss = model(input_ids, segment_ids, input_mask, label_ids)
logits = model(x_input_ids, x_input_mask, x_segment_ids,
y_input_ids, y_input_mask, y_segment_ids,
input_ids, segment_ids, input_mask)
logits = logits.detach().cpu().numpy()
label_ids = label_ids.to('cpu').numpy()
preds.extend(np.argmax(logits, 1).tolist())
labels.extend(label_ids.tolist())
tmp_eval_accuracy = accuracy(logits, label_ids)
#tmp_eval_map = mean_average_precision(label_ids, logits[:,1])
#tmp_eval_mrr = mean_reciprocal_rank(label_ids, logits[:, 1])
# eval_loss += tmp_eval_loss.mean().item()
eval_accuracy += tmp_eval_accuracy
#eval_map += tmp_eval_map
#eval_mrr += tmp_eval_mrr
nb_eval_examples += input_ids.size(0)
nb_eval_steps += 1
# eval_loss = eval_loss / nb_eval_steps
eval_accuracy = eval_accuracy / nb_eval_examples
eval_f1 = f1_score(np.array(labels), np.array(preds))
#eval_map = eval_map / nb_eval_examples
#eval_mrr = eval_mrr / nb_eval_examples
result = { # 'eval_loss': eval_loss,
'eval_accuracy': eval_accuracy,
'eval_f1_score': eval_f1}
#'eval_map': eval_map,
#'eval_mrr': eval_mrr}
pprint(result)
def get_dataloader(processor, args, tokenizer, mode='test'):
eval_examples = processor.get_test_examples() if mode=='test' \
else processor.get_dev_examples()
eval_examples = eval_examples[:1000]
label_list = processor.get_labels()
eval_features = convert_examples_to_features(
eval_examples, label_list, args.max_seq_length, tokenizer)
logger.info("***** Running evaluation *****")
logger.info(" Num examples = %d", len(eval_examples))
logger.info(" Batch size = %d", args.eval_batch_size)
all_input_ids = torch.tensor(
[f.input_ids for f in eval_features], dtype=torch.long)
all_input_mask = torch.tensor(
[f.input_mask for f in eval_features], dtype=torch.long)
all_segment_ids = torch.tensor(
[f.segment_ids for f in eval_features], dtype=torch.long)
all_label_ids = torch.tensor(
[f.label_id for f in eval_features], dtype=torch.long)
x_input_ids = torch.tensor(
[f.input_ids_x for f in eval_features], dtype=torch.long)
x_input_mask = torch.tensor(
[f.input_mask_x for f in eval_features], dtype=torch.long)
x_segment_ids = torch.tensor(
[f.segment_ids_x for f in eval_features], dtype=torch.long)
y_input_ids = torch.tensor(
[f.input_ids_y for f in eval_features], dtype=torch.long)
y_input_mask = torch.tensor(
[f.input_mask_y for f in eval_features], dtype=torch.long)
y_segment_ids = torch.tensor(
[f.segment_ids_y for f in eval_features], dtype=torch.long)
eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_label_ids,
x_input_ids, x_input_mask, x_segment_ids,
y_input_ids, y_input_mask, y_segment_ids)
# Run prediction for full data
eval_sampler = SequentialSampler(eval_data)
eval_dataloader = DataLoader(
eval_data, sampler=eval_sampler, batch_size=args.eval_batch_size)
return eval_dataloader
def map_eval(eval_file, token_length, tokenizer, device, model, label_list):
model.eval()
datasets, labels = get_datasets(eval_file)
total_batches = 0
total_avp = 0.0
total_mrr = 0.0
# scores, labels = [], []
for k, dataset in tqdm(datasets.items(), desc="Eval datasets"):
examples = []
for i, data in enumerate(dataset):
examples.append(InputExample(i, data[0], data[1], '0'))
eval_features = convert_examples_to_features(examples, label_list,
token_length, tokenizer)
all_input_ids = torch.tensor(
[f.input_ids for f in eval_features], dtype=torch.long).to(device)
all_input_mask = torch.tensor(
[f.input_mask for f in eval_features], dtype=torch.long).to(device)
all_segment_ids = torch.tensor(
[f.segment_ids for f in eval_features], dtype=torch.long).to(device)
# all_label_ids = torch.tensor(
# [f.label_id for f in eval_features], dtype=torch.long).to(device)
x_input_ids = torch.tensor(
[f.input_ids_x for f in eval_features], dtype=torch.long).to(device)
x_input_mask = torch.tensor(
[f.input_mask_x for f in eval_features], dtype=torch.long).to(device)
x_segment_ids = torch.tensor(
[f.segment_ids_x for f in eval_features], dtype=torch.long).to(device)
y_input_ids = torch.tensor(
[f.input_ids_y for f in eval_features], dtype=torch.long).to(device)
y_input_mask = torch.tensor(
[f.input_mask_y for f in eval_features], dtype=torch.long).to(device)
y_segment_ids = torch.tensor(
[f.segment_ids_y for f in eval_features], dtype=torch.long).to(device)
with torch.no_grad():
logits = model(x_input_ids, x_input_mask, x_segment_ids,
y_input_ids, y_input_mask, y_segment_ids,
all_input_ids, all_segment_ids, all_input_mask)
score = F.softmax(logits, dim=1)[:, 1].cpu().numpy()
label = np.array(list(map(int, labels[k])))
# print(score, label)
# scores.append(score)
# labels.append(label)
total_avp += mean_average_precision(label, score)
total_mrr += mean_reciprocal_rank(label, score)
total_batches += 1
mAP = total_avp / total_batches
mRR = total_mrr / total_batches
logger.info("map is : {}, mrr is : {}".format(mAP, mRR))
data = {'map': mAP, 'mrr': mRR}
with open('./result.json', 'w', encoding='utf-8') as f:
json.dump(data, f)
if __name__ == "__main__":
main()