-
Notifications
You must be signed in to change notification settings - Fork 260
/
prednet.py
executable file
·311 lines (274 loc) · 16.6 KB
/
prednet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import numpy as np
from keras import backend as K
from keras import activations
from keras.layers import Recurrent
from keras.layers import Conv2D, UpSampling2D, MaxPooling2D
from keras.engine import InputSpec
from keras_utils import legacy_prednet_support
class PredNet(Recurrent):
'''PredNet architecture - Lotter 2016.
Stacked convolutional LSTM inspired by predictive coding principles.
# Arguments
stack_sizes: number of channels in targets (A) and predictions (Ahat) in each layer of the architecture.
Length is the number of layers in the architecture.
First element is the number of channels in the input.
Ex. (3, 16, 32) would correspond to a 3 layer architecture that takes in RGB images and has 16 and 32
channels in the second and third layers, respectively.
R_stack_sizes: number of channels in the representation (R) modules.
Length must equal length of stack_sizes, but the number of channels per layer can be different.
A_filt_sizes: filter sizes for the target (A) modules.
Has length of 1 - len(stack_sizes).
Ex. (3, 3) would mean that targets for layers 2 and 3 are computed by a 3x3 convolution of the errors (E)
from the layer below (followed by max-pooling)
Ahat_filt_sizes: filter sizes for the prediction (Ahat) modules.
Has length equal to length of stack_sizes.
Ex. (3, 3, 3) would mean that the predictions for each layer are computed by a 3x3 convolution of the
representation (R) modules at each layer.
R_filt_sizes: filter sizes for the representation (R) modules.
Has length equal to length of stack_sizes.
Corresponds to the filter sizes for all convolutions in the LSTM.
pixel_max: the maximum pixel value.
Used to clip the pixel-layer prediction.
error_activation: activation function for the error (E) units.
A_activation: activation function for the target (A) and prediction (A_hat) units.
LSTM_activation: activation function for the cell and hidden states of the LSTM.
LSTM_inner_activation: activation function for the gates in the LSTM.
output_mode: either 'error', 'prediction', 'all' or layer specification (ex. R2, see below).
Controls what is outputted by the PredNet.
If 'error', the mean response of the error (E) units of each layer will be outputted.
That is, the output shape will be (batch_size, nb_layers).
If 'prediction', the frame prediction will be outputted.
If 'all', the output will be the frame prediction concatenated with the mean layer errors.
The frame prediction is flattened before concatenation.
Nomenclature of 'all' is kept for backwards compatibility, but should not be confused with returning all of the layers of the model
For returning the features of a particular layer, output_mode should be of the form unit_type + layer_number.
For instance, to return the features of the LSTM "representational" units in the lowest layer, output_mode should be specificied as 'R0'.
The possible unit types are 'R', 'Ahat', 'A', and 'E' corresponding to the 'representation', 'prediction', 'target', and 'error' units respectively.
extrap_start_time: time step for which model will start extrapolating.
Starting at this time step, the prediction from the previous time step will be treated as the "actual"
data_format: 'channels_first' or 'channels_last'.
It defaults to the `image_data_format` value found in your
Keras config file at `~/.keras/keras.json`.
# References
- [Deep predictive coding networks for video prediction and unsupervised learning](https://arxiv.org/abs/1605.08104)
- [Long short-term memory](http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf)
- [Convolutional LSTM network: a machine learning approach for precipitation nowcasting](http://arxiv.org/abs/1506.04214)
- [Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects](http://www.nature.com/neuro/journal/v2/n1/pdf/nn0199_79.pdf)
'''
@legacy_prednet_support
def __init__(self, stack_sizes, R_stack_sizes,
A_filt_sizes, Ahat_filt_sizes, R_filt_sizes,
pixel_max=1., error_activation='relu', A_activation='relu',
LSTM_activation='tanh', LSTM_inner_activation='hard_sigmoid',
output_mode='error', extrap_start_time=None,
data_format=K.image_data_format(), **kwargs):
self.stack_sizes = stack_sizes
self.nb_layers = len(stack_sizes)
assert len(R_stack_sizes) == self.nb_layers, 'len(R_stack_sizes) must equal len(stack_sizes)'
self.R_stack_sizes = R_stack_sizes
assert len(A_filt_sizes) == (self.nb_layers - 1), 'len(A_filt_sizes) must equal len(stack_sizes) - 1'
self.A_filt_sizes = A_filt_sizes
assert len(Ahat_filt_sizes) == self.nb_layers, 'len(Ahat_filt_sizes) must equal len(stack_sizes)'
self.Ahat_filt_sizes = Ahat_filt_sizes
assert len(R_filt_sizes) == (self.nb_layers), 'len(R_filt_sizes) must equal len(stack_sizes)'
self.R_filt_sizes = R_filt_sizes
self.pixel_max = pixel_max
self.error_activation = activations.get(error_activation)
self.A_activation = activations.get(A_activation)
self.LSTM_activation = activations.get(LSTM_activation)
self.LSTM_inner_activation = activations.get(LSTM_inner_activation)
default_output_modes = ['prediction', 'error', 'all']
layer_output_modes = [layer + str(n) for n in range(self.nb_layers) for layer in ['R', 'E', 'A', 'Ahat']]
assert output_mode in default_output_modes + layer_output_modes, 'Invalid output_mode: ' + str(output_mode)
self.output_mode = output_mode
if self.output_mode in layer_output_modes:
self.output_layer_type = self.output_mode[:-1]
self.output_layer_num = int(self.output_mode[-1])
else:
self.output_layer_type = None
self.output_layer_num = None
self.extrap_start_time = extrap_start_time
assert data_format in {'channels_last', 'channels_first'}, 'data_format must be in {channels_last, channels_first}'
self.data_format = data_format
self.channel_axis = -3 if data_format == 'channels_first' else -1
self.row_axis = -2 if data_format == 'channels_first' else -3
self.column_axis = -1 if data_format == 'channels_first' else -2
super(PredNet, self).__init__(**kwargs)
self.input_spec = [InputSpec(ndim=5)]
def compute_output_shape(self, input_shape):
if self.output_mode == 'prediction':
out_shape = input_shape[2:]
elif self.output_mode == 'error':
out_shape = (self.nb_layers,)
elif self.output_mode == 'all':
out_shape = (np.prod(input_shape[2:]) + self.nb_layers,)
else:
stack_str = 'R_stack_sizes' if self.output_layer_type == 'R' else 'stack_sizes'
stack_mult = 2 if self.output_layer_type == 'E' else 1
out_stack_size = stack_mult * getattr(self, stack_str)[self.output_layer_num]
out_nb_row = input_shape[self.row_axis] / 2**self.output_layer_num
out_nb_col = input_shape[self.column_axis] / 2**self.output_layer_num
if self.data_format == 'channels_first':
out_shape = (out_stack_size, out_nb_row, out_nb_col)
else:
out_shape = (out_nb_row, out_nb_col, out_stack_size)
if self.return_sequences:
return (input_shape[0], input_shape[1]) + out_shape
else:
return (input_shape[0],) + out_shape
def get_initial_state(self, x):
input_shape = self.input_spec[0].shape
init_nb_row = input_shape[self.row_axis]
init_nb_col = input_shape[self.column_axis]
base_initial_state = K.zeros_like(x) # (samples, timesteps) + image_shape
non_channel_axis = -1 if self.data_format == 'channels_first' else -2
for _ in range(2):
base_initial_state = K.sum(base_initial_state, axis=non_channel_axis)
base_initial_state = K.sum(base_initial_state, axis=1) # (samples, nb_channels)
initial_states = []
states_to_pass = ['r', 'c', 'e']
nlayers_to_pass = {u: self.nb_layers for u in states_to_pass}
if self.extrap_start_time is not None:
states_to_pass.append('ahat') # pass prediction in states so can use as actual for t+1 when extrapolating
nlayers_to_pass['ahat'] = 1
for u in states_to_pass:
for l in range(nlayers_to_pass[u]):
ds_factor = 2 ** l
nb_row = init_nb_row // ds_factor
nb_col = init_nb_col // ds_factor
if u in ['r', 'c']:
stack_size = self.R_stack_sizes[l]
elif u == 'e':
stack_size = 2 * self.stack_sizes[l]
elif u == 'ahat':
stack_size = self.stack_sizes[l]
output_size = stack_size * nb_row * nb_col # flattened size
reducer = K.zeros((input_shape[self.channel_axis], output_size)) # (nb_channels, output_size)
initial_state = K.dot(base_initial_state, reducer) # (samples, output_size)
if self.data_format == 'channels_first':
output_shp = (-1, stack_size, nb_row, nb_col)
else:
output_shp = (-1, nb_row, nb_col, stack_size)
initial_state = K.reshape(initial_state, output_shp)
initial_states += [initial_state]
if K._BACKEND == 'theano':
from theano import tensor as T
# There is a known issue in the Theano scan op when dealing with inputs whose shape is 1 along a dimension.
# In our case, this is a problem when training on grayscale images, and the below line fixes it.
initial_states = [T.unbroadcast(init_state, 0, 1) for init_state in initial_states]
if self.extrap_start_time is not None:
initial_states += [K.variable(0, int if K.backend() != 'tensorflow' else 'int32')] # the last state will correspond to the current timestep
return initial_states
def build(self, input_shape):
self.input_spec = [InputSpec(shape=input_shape)]
self.conv_layers = {c: [] for c in ['i', 'f', 'c', 'o', 'a', 'ahat']}
for l in range(self.nb_layers):
for c in ['i', 'f', 'c', 'o']:
act = self.LSTM_activation if c == 'c' else self.LSTM_inner_activation
self.conv_layers[c].append(Conv2D(self.R_stack_sizes[l], self.R_filt_sizes[l], padding='same', activation=act, data_format=self.data_format))
act = 'relu' if l == 0 else self.A_activation
self.conv_layers['ahat'].append(Conv2D(self.stack_sizes[l], self.Ahat_filt_sizes[l], padding='same', activation=act, data_format=self.data_format))
if l < self.nb_layers - 1:
self.conv_layers['a'].append(Conv2D(self.stack_sizes[l+1], self.A_filt_sizes[l], padding='same', activation=self.A_activation, data_format=self.data_format))
self.upsample = UpSampling2D(data_format=self.data_format)
self.pool = MaxPooling2D(data_format=self.data_format)
self.trainable_weights = []
nb_row, nb_col = (input_shape[-2], input_shape[-1]) if self.data_format == 'channels_first' else (input_shape[-3], input_shape[-2])
for c in sorted(self.conv_layers.keys()):
for l in range(len(self.conv_layers[c])):
ds_factor = 2 ** l
if c == 'ahat':
nb_channels = self.R_stack_sizes[l]
elif c == 'a':
nb_channels = 2 * self.stack_sizes[l]
else:
nb_channels = self.stack_sizes[l] * 2 + self.R_stack_sizes[l]
if l < self.nb_layers - 1:
nb_channels += self.R_stack_sizes[l+1]
in_shape = (input_shape[0], nb_channels, nb_row // ds_factor, nb_col // ds_factor)
if self.data_format == 'channels_last': in_shape = (in_shape[0], in_shape[2], in_shape[3], in_shape[1])
with K.name_scope('layer_' + c + '_' + str(l)):
self.conv_layers[c][l].build(in_shape)
self.trainable_weights += self.conv_layers[c][l].trainable_weights
self.states = [None] * self.nb_layers*3
if self.extrap_start_time is not None:
self.t_extrap = K.variable(self.extrap_start_time, int if K.backend() != 'tensorflow' else 'int32')
self.states += [None] * 2 # [previous frame prediction, timestep]
def step(self, a, states):
r_tm1 = states[:self.nb_layers]
c_tm1 = states[self.nb_layers:2*self.nb_layers]
e_tm1 = states[2*self.nb_layers:3*self.nb_layers]
if self.extrap_start_time is not None:
t = states[-1]
a = K.switch(t >= self.t_extrap, states[-2], a) # if past self.extrap_start_time, the previous prediction will be treated as the actual
c = []
r = []
e = []
# Update R units starting from the top
for l in reversed(range(self.nb_layers)):
inputs = [r_tm1[l], e_tm1[l]]
if l < self.nb_layers - 1:
inputs.append(r_up)
inputs = K.concatenate(inputs, axis=self.channel_axis)
i = self.conv_layers['i'][l].call(inputs)
f = self.conv_layers['f'][l].call(inputs)
o = self.conv_layers['o'][l].call(inputs)
_c = f * c_tm1[l] + i * self.conv_layers['c'][l].call(inputs)
_r = o * self.LSTM_activation(_c)
c.insert(0, _c)
r.insert(0, _r)
if l > 0:
r_up = self.upsample.call(_r)
# Update feedforward path starting from the bottom
for l in range(self.nb_layers):
ahat = self.conv_layers['ahat'][l].call(r[l])
if l == 0:
ahat = K.minimum(ahat, self.pixel_max)
frame_prediction = ahat
# compute errors
e_up = self.error_activation(ahat - a)
e_down = self.error_activation(a - ahat)
e.append(K.concatenate((e_up, e_down), axis=self.channel_axis))
if self.output_layer_num == l:
if self.output_layer_type == 'A':
output = a
elif self.output_layer_type == 'Ahat':
output = ahat
elif self.output_layer_type == 'R':
output = r[l]
elif self.output_layer_type == 'E':
output = e[l]
if l < self.nb_layers - 1:
a = self.conv_layers['a'][l].call(e[l])
a = self.pool.call(a) # target for next layer
if self.output_layer_type is None:
if self.output_mode == 'prediction':
output = frame_prediction
else:
for l in range(self.nb_layers):
layer_error = K.mean(K.batch_flatten(e[l]), axis=-1, keepdims=True)
all_error = layer_error if l == 0 else K.concatenate((all_error, layer_error), axis=-1)
if self.output_mode == 'error':
output = all_error
else:
output = K.concatenate((K.batch_flatten(frame_prediction), all_error), axis=-1)
states = r + c + e
if self.extrap_start_time is not None:
states += [frame_prediction, t + 1]
return output, states
def get_config(self):
config = {'stack_sizes': self.stack_sizes,
'R_stack_sizes': self.R_stack_sizes,
'A_filt_sizes': self.A_filt_sizes,
'Ahat_filt_sizes': self.Ahat_filt_sizes,
'R_filt_sizes': self.R_filt_sizes,
'pixel_max': self.pixel_max,
'error_activation': self.error_activation.__name__,
'A_activation': self.A_activation.__name__,
'LSTM_activation': self.LSTM_activation.__name__,
'LSTM_inner_activation': self.LSTM_inner_activation.__name__,
'data_format': self.data_format,
'extrap_start_time': self.extrap_start_time,
'output_mode': self.output_mode}
base_config = super(PredNet, self).get_config()
return dict(list(base_config.items()) + list(config.items()))