-
Notifications
You must be signed in to change notification settings - Fork 0
/
fill_model.py
353 lines (301 loc) · 15.3 KB
/
fill_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
import tensorflow as tf
from verbose_model import VBModel
from tensorflow.python.layers import core as layers_core
import numpy as np
class Config:
"""Holds model hyperparams and data information.
The config class is used to store various hyperparameters and dataset
information parameters. Model objects are passed a Config() object at
instantiation.
"""
dropout = 0.0
hidden_size = 128
attention_size = 64
batch_size = 64
n_epochs = 1
lr = 0.01
n_layers = 1
beam_width = 10
reg_weight = 0.00001
max_gradient_norm = 5.0
cache_size = 100
uses_regularization = True
def __init__(self, embed_size, vocab_size, max_encoder_timesteps, max_decoder_timesteps,
pad_token, start_token, end_token, attention, bidirectional, id2tok, beamsearch=False,
mode='train', large=True, cache=False):
self.embed_size = embed_size
self.vocab_size = vocab_size
self.max_encoder_timesteps = max_encoder_timesteps
self.pad_token = pad_token
self.attention = attention
self.bidirectional = bidirectional
self.mode = mode
self.id2tok = id2tok
self.use_cache = cache
if large:
self.batch_size = 64
self.hidden_size = 128
self.n_layers = 1
def __str__(self):
if self.use_cache:
return 'RegularizationWeight_{}_HiddenSize_{}_Dropout_{}_NLayers_{}_Lr_{}_Bidirectional_{}_Attention_{}_CacheSize_{}_Embed_{}'.format(
self.reg_weight, self.hidden_size, self.dropout, self.n_layers, self.lr, self.bidirectional,
self.attention, self.cache_size, self.embed_size)
else:
return 'RegularizationWeight_{}_HiddenSize_{}_Dropout_{}_NLayers_{}_Lr_{}_Bidirectional_{}_Attention_{}_Cache_{}_Embed_{}'.format(
self.reg_weight, self.hidden_size, self.dropout, self.n_layers, self.lr, self.bidirectional,
self.attention, self.use_cache, self.embed_size)
class FillModel(VBModel):
cache = None
def add_placeholders(self):
self.encoder_input_placeholder = tf.placeholder(tf.int32, shape=(None, self.config.max_encoder_timesteps),
name="encoder_in")
self.labels_placeholder = tf.placeholder(tf.int32, shape=(None,),
name="labels")
self.dropout_placeholder = tf.placeholder(tf.float32, shape=(),
name='dropout')
self.encoder_lengths_placeholder = tf.placeholder(tf.int32, shape=(None,),
name='enc_lengths')
self.cache_placeholder = tf.placeholder(tf.float32, shape=(self.config.cache_size, self.config.hidden_size),
name='cache')
self.dynamic_batch_size = tf.placeholder(tf.int32, shape=(), name='dynamic_batch_size')
def create_feed_dict(self, encoder_inputs_batch,
labels_batch=None, encoder_lengths_batch=None,
batch_size=None, dropout=0.0):
feed_dict = {
self.encoder_input_placeholder: encoder_inputs_batch,
self.dropout_placeholder: dropout,
self.cache_placeholder: self.cache
}
if labels_batch is not None:
feed_dict[self.labels_placeholder] = labels_batch
if encoder_lengths_batch is not None:
feed_dict[self.encoder_lengths_placeholder] = encoder_lengths_batch
if batch_size is not None:
feed_dict[self.dynamic_batch_size] = batch_size
return feed_dict
def add_embedding(self):
pretrained_embeddings = tf.Variable(self.pretrained_embeddings, dtype=tf.float32)
#self.variable_summaries(pretrained_embeddings, name='embeddings')
encoder_embeddings = tf.nn.embedding_lookup(
pretrained_embeddings, self.encoder_input_placeholder)
encoder_embeddings = tf.cast(encoder_embeddings, tf.float32)
return encoder_embeddings
def get_lstm_cell(self):
lstm = tf.nn.rnn_cell.LSTMCell(self.config.hidden_size)
lstm = tf.nn.rnn_cell.DropoutWrapper(lstm, output_keep_prob=1.0 - self.dropout_placeholder)
return lstm
# additive attention
def attention(self, inputs):
W = tf.get_variable("weights_W", [self.config.hidden_size, self.config.attention_size])
v = tf.get_variable("weights_v", [self.config.attention_size, 1])
inputs = tf.reshape(inputs, shape=(-1, self.config.hidden_size))
M = tf.tanh(tf.matmul(inputs, W))
a = tf.nn.softmax(tf.matmul(M, v), dim=-1)
a = tf.reshape(a, shape=(self.dynamic_batch_size, self.config.max_encoder_timesteps))
a = tf.tile(tf.expand_dims(a, dim=-1), multiples=(1, 1, self.config.hidden_size))
inputs = tf.reshape(inputs, shape=(self.dynamic_batch_size, self.config.max_encoder_timesteps, self.config.hidden_size))
weighted_input = tf.reduce_sum(inputs * a, axis=1)
return weighted_input
# TODO modify this
def cache_attention(self):
self.cache_W = tf.get_variable("cache_weights_W", [self.config.hidden_size, self.config.attention_size])
self.cache_v = tf.get_variable("cache_weights_v", [self.config.attention_size])
M = tf.tanh(tf.matmul(self.cache_placeholder, self.cache_W))
a = tf.matmul(M, tf.transpose(tf.expand_dims(self.cache_v,0), [1,0]))
a = tf.reshape(a, shape=(tf.shape(a)[0],))
a = tf.nn.softmax(a)
self.cache_weights = a
a = tf.expand_dims(a, dim=1)
weighted_cache = tf.reduce_sum(self.cache_placeholder * a, axis=0)
return weighted_cache
def get_encoder(self, encoder_in):
if self.config.bidirectional:
# forward lstm
forward_cells = [self.get_lstm_cell() for _ in range(self.config.n_layers)]
# backward lstm
backward_cells = [self.get_lstm_cell() for _ in range(self.config.n_layers)]
encoder_outputs, _, _ = tf.contrib.rnn.stack_bidirectional_dynamic_rnn(
forward_cells, backward_cells, encoder_in,
dtype=tf.float32
)
else:
encoder_cell = tf.nn.rnn_cell.MultiRNNCell([self.get_lstm_cell() for _ in range(self.config.n_layers)])
encoder_outputs, _ = tf.nn.dynamic_rnn(
cell=encoder_cell, inputs=encoder_in,
dtype=tf.float32
)
return encoder_outputs
def add_prediction_op(self):
encoder_in = self.add_embedding()
with tf.variable_scope('prediction'):
encoder_outputs = self.get_encoder(encoder_in)
print(encoder_outputs)
if self.config.attention:
self.last_output = self.attention(encoder_outputs)
else:
encoder_outputs = tf.transpose(encoder_outputs, [1, 0, 2])
self.last_output = tf.gather(encoder_outputs, int(encoder_outputs.get_shape()[0]) - 1)
print(self.last_output)
if self.config.uses_regularization:
self.last_output = tf.layers.batch_normalization(self.last_output)
state = self.last_output
if self.config.use_cache:
z = tf.get_variable("final_cache_weights_z", [self.config.hidden_size])
weighted_cache = self.cache_attention()
state = state + z * weighted_cache
W = tf.get_variable('W_out', shape=(self.config.hidden_size, self.config.vocab_size),
dtype=tf.float32)
b = tf.get_variable('b_out', shape=(1, self.config.vocab_size),
dtype=tf.float32)
pred = tf.matmul(state, W) + b
if self.config.uses_regularization:
pred = tf.layers.batch_normalization(pred)
return pred
def add_loss_op(self, pred):
loss = tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=self.labels_placeholder, logits=pred)
loss = tf.reduce_mean(loss)
for var in tf.trainable_variables():
loss += self.config.reg_weight * tf.nn.l2_loss(var)
return loss
def add_training_op(self, loss):
train_op = tf.train.AdamOptimizer().minimize(loss)
return train_op
def predict_on_batch(self, sess, encoder_inputs_batch, decoder_inputs_batch, labels_batch=None,
encoder_lengths_batch=None, decoder_lengths_batch=None, batch_size=None):
"""Make predictions for the provided batch of data
Args:
sess: tf.Session()
input_batch: np.ndarray of shape (n_samples, n_features)
Returns:
predictions: np.ndarray of shape (n_samples, n_classes)
"""
feed = self.create_feed_dict(encoder_inputs_batch, labels_batch=labels_batch,
encoder_lengths_batch=encoder_lengths_batch,
batch_size=batch_size)
cache_weights = None
if labels_batch is None:
if self.config.use_cache:
predictions, cache_weights = sess.run([tf.argmax(self.pred, axis=1), self.cache_weights], feed_dict=feed)
else:
predictions = sess.run([tf.argmax(self.pred, axis=1)], feed_dict=feed)
loss = 0
else:
if self.config.use_cache:
predictions, cache_weights, loss = sess.run(
[tf.argmax(self.pred, axis=1), self.cache_weights, self.loss], feed_dict=feed)
else:
predictions, loss = sess.run(
[tf.argmax(self.pred, axis=1), self.loss], feed_dict=feed)
return predictions, cache_weights, loss
def train_on_batch(self, sess, encoder_inputs_batch, decoder_inputs_batch,
encoder_lengths_batch, decoder_lengths_batch, labels_batch, batch_size):
#merge = tf.summary.merge_all()
feed = self.create_feed_dict(encoder_inputs_batch, labels_batch=labels_batch,
encoder_lengths_batch=encoder_lengths_batch,
batch_size=batch_size, dropout=self.config.dropout)
predictions, _, loss = sess.run([tf.argmax(self.pred, axis=1), self.train_op, self.loss], feed_dict=feed)
if self.config.use_cache:
candidate_batch, W, v = sess.run([self.last_output,
self.cache_W, self.cache_v], feed_dict=feed)
for i in range(len(candidate_batch)):
candidate = candidate_batch[i]
cand_sentence = encoder_inputs_batch[i]
if self.insert_cache_candidate(candidate, cand_sentence, W, v):
print('inserted cache')
self.maintain_cache(0, W, v)
return predictions, loss, self.cache, self.cache_sentences
def score_state_vector(self, a, W, v):
if np.array_equal(a, np.zeros_like(a)):
return float('-inf')
else:
return np.dot(np.tanh(np.matmul(a, W)), v)
def insert_cache_candidate(self, candidate, cand_sentence, W, v):
candidate_score = self.score_state_vector(candidate, W, v)
min_score = self.score_state_vector(self.cache[0], W, v)
if candidate_score > min_score:
self.cache[0] = candidate
self.cache_sentences[0] = cand_sentence
return True
return False
def maintain_cache(self, i, W, v):
print(i)
def right(j):
return (j + 1) * 2 - 1
def left(j):
return (j + 1) * 2
def swap_right():
# print('start')
# print(self.cache_sentences[i])
# print(self.cache_sentences[right(i)])
temp = np.copy(self.cache[right(i)])
temp_sentence = np.copy(self.cache_sentences[right(i)])
# print('temp')
# print(temp_sentence)
self.cache[right(i)] = np.copy(self.cache[i])
self.cache_sentences[right(i)] = np.copy(self.cache_sentences[i])
# print('set child')
# print(self.cache_sentences[right(i)])
self.cache[i] = temp
self.cache_sentences[i] = temp_sentence
# print('end')
# print(self.cache_sentences[i])
# print(self.cache_sentences[right(i)])
def swap_left():
# print('start')
# print(self.cache_sentences[i])
# print(self.cache_sentences[left(i)])
temp = np.copy(self.cache[left(i)])
temp_sentence = np.copy(self.cache_sentences[left(i)])
# print('temp')
# print(temp_sentence)
self.cache[left(i)] = np.copy(self.cache[i])
self.cache_sentences[left(i)] = np.copy(self.cache_sentences[i])
# print('set child')
# print(self.cache_sentences[left(i)])
self.cache[i] = temp
self.cache_sentences[i] = temp_sentence
# print('end')
if i >= len(self.cache):
return
right_score = float('+inf')
left_score = float('+inf')
candidate_score = self.score_state_vector(self.cache[i], W, v)
if right(i) < len(self.cache):
right_score = self.score_state_vector(self.cache[right(i)], W, v)
if left(i) < len(self.cache):
left_score = self.score_state_vector(self.cache[left(i)], W, v)
if candidate_score < min(right_score, left_score):
return
if left_score <= right_score:
swap_left()
self.maintain_cache(left(i), W, v)
elif right_score < left_score:
swap_right()
self.maintain_cache(right(i), W, v)
def clear_cache(self):
self.cache = np.zeros((self.config.cache_size, self.config.hidden_size))
def __init__(self, config, pretrained_embeddings, report=None):
super(FillModel, self).__init__(config, report)
self.pretrained_embeddings = pretrained_embeddings
# Defining placeholders.
self.encoder_input_placeholder = None
self.decoder_input_placeholder = None
self.labels_placeholder = None
self.dropout_placeholder = None
self.encoder_lengths_placeholder = None
self.decoder_lengths_placeholder = None
self.dynamic_batch_size = None
self.cache_placeholder = None
self.build()
if self.config.mode == 'train' or not self.config.use_cache:
self.cache = np.zeros((self.config.cache_size, self.config.hidden_size))
self.cache_sentences = np.zeros((self.config.cache_size, self.config.max_encoder_timesteps))
else:
assert(self.config.mode == 'test' or self.config.mode == 'restore')
if self.config.use_cache:
self.cache = np.load('models/{}/saved_cache.npy'.format(config))
self.cache_sentences = np.load('models/{}/saved_cache_sentences.npy'.format(config))
def preprocess_sequence_data(self, examples):
return examples