Skip to content

Latest commit

 

History

History
247 lines (205 loc) · 9.6 KB

hypot.md

File metadata and controls

247 lines (205 loc) · 9.6 KB

hypot

  • cmath[meta header]
  • std[meta namespace]
  • function[meta id-type]
  • [mathjax enable]
  • cpp11[meta cpp]
namespace std {
  float
    hypot(float x,
          float y);               // (1) C++11からC++20まで
  double
    hypot(double x,
          double y);              // (2) C++11からC++20まで
  long double
    hypot(long double x,
          long double y);         // (3) C++11からC++20まで

  floating-point-type
    hypot(floating-point-type x,
          floating-point-type y); // (4) C++23
  constexpr floating-point-type
    hypot(floating-point-type x,
          floating-point-type y); // (4) C++26

  Promoted
    hypot(Arithmetic1 x,
          Arithmetic2 y);         // (5) C++11
  constexpr Promoted
    hypot(Arithmetic1 x,
          Arithmetic2 y);         // (5) C++26

  float
    hypotf(float x,
           float y);              // (6) C++17
  constexpr float
    hypotf(float x,
           float y);              // (6) C++26

  long double
    hypotl(long double x,
           long double y);        // (7) C++17
  constexpr long double
    hypotl(long double x,
           long double y);        // (7) C++26

  float
    hypot(float x,
          float y,
          float z);               // (8) C++17からC++20まで
  double
    hypot(double x,
          double y,
          double z);              // (9) C++17からC++20まで
  long double
    hypot(long double x,
          long double y,
          long double z);         // (10) C++17からC++20まで

  floating-point-type
    hypot(floating-point-type x,
          floating-point-type y,
          floating-point-type z); // (11) C++23
  constexpr floating-point-type
    hypot(floating-point-type x,
          floating-point-type y,
          floating-point-type z); // (11) C++26

  Promoted
    hypot(Arithmetic1 x,
          Arithmetic2 y,
          Arithmetic3 z);         // (12) C++17
  constexpr Promoted
    hypot(Arithmetic1 x,
          Arithmetic2 y,
          Arithmetic3 z);         // (12) C++26
}
  • Promoted[italic]
  • Arithmetic1[italic]
  • Arithmetic2[italic]
  • Arithmetic3[italic]

概要

算術型の平方和の平方根を求める。この際、余計なオーバーフロー、アンダーフローを起こさない。hypot は hypotenuse((直角三角形の)斜辺)の略。

この関数は、「三平方の定理」によって、直角三角形の斜辺の長さを求めるために使用できる。直角三角形において、直角に隣接する辺aとb、および斜辺cがあったとき、辺の長さは、三平方の定理によって以下の関係が成り立つ:

a2 + b2 = c2

この関数の効果である以下の式は、三平方の定理の式変形である:

$$ f(x, y) = \sqrt{x^2 + y^2} $$

a2 + b2c2と等しくなるため、2乗の和に対する平方根を求めることで、斜辺cの長さが求まる。つまり、この関数に引数として、直角に隣接する辺aとbの長さを与えることで、戻り値として斜辺cの長さが返される。

各オーバーロードの概要は、以下の通りである:

  • (1) : 2引数版のfloatに対するオーバーロード
  • (2) : 2引数版のdoubleに対するオーバーロード
  • (3) : 2引数版のlong doubleに対するオーバーロード
  • (4) : 2引数版の浮動小数点数型に対するオーバーロード
  • (5) : 2引数版の算術型に対するオーバーロード (大きい精度にキャストして計算される。整数はdoubleで計算される)
  • (6) : 2引数版のfloat型規定
  • (7) : 2引数版のlong double型規定
  • (8) : 3引数版のfloatに対するオーバーロード
  • (9) : 3引数版のdoubleに対するオーバーロード
  • (10) : 3引数版のlong doubleに対するオーバーロード
  • (11) : 3引数版の浮動小数点数型に対するオーバーロード
  • (12) : 3引数版の算術型に対するオーバーロード (大きい精度にキャストして計算される。整数はdoubleで計算される)

戻り値

  • (1)-(7) : 引数 x と引数 y の平方和の平方根を返す。
  • (8)-(12) : 引数 x 、引数 y 、引数 z の平方和の平方根を返す。

オーバーフローエラー、アンダーフローエラーが発生する可能性がある。

備考

  • (1)-(7) : $$ f(x, y) = \sqrt{x^2 + y^2} $$
  • (8)-(12) : $$ f(x, y, z) = \sqrt{x^2 + y^2 + z^2} $$
  • 概要の「余計なオーバーフロー、アンダーフローを起こさない」とは、たとえ x2 が戻り値型の範囲を超えていても、結果が戻り値型の範囲に収まるのであればオーバーフローしないで正しい結果を返す、と言う事である。
  • オーバーフローエラー、アンダーフローエラーが発生した場合の挙動については、<cmath> を参照。
  • 処理系が IEC 60559 に準拠している場合(std::numeric_limits<T>::is_iec559() != false)、以下の規定が追加される。
    • hypot(x, y)hypot(y, x)hypot(x, -y) は等価である。
    • hypot(x, ±0) は、fabs(x) と等価である。
    • hypot(±∞, y) の戻り値は、たとえ y が NaN の場合でも +∞ となる。
  • C++23では、(1)、(2)、(3)が(4)に統合、(8)、(9)、(10)が(11)に統合され、拡張浮動小数点数型を含む浮動小数点数型へのオーバーロードとして定義された

基本的な使い方

#include <cmath>
#include <limits>
#include <iostream>

int main() {
  // 2引数版
  std::cout << std::fixed;
  std::cout << "hypot(0.0, 0.0)  = " << std::hypot(0.0, 0.0) << std::endl;
  std::cout << "hypot(1.0, 1.0)  = " << std::hypot(1.0, 1.0) << std::endl;
  std::cout << "hypot(3.0, 4.0)  = " << std::hypot(3.0, 4.0) << std::endl;
  std::cout << "hypot(+∞, NaN)   = " << std::hypot(std::numeric_limits<double>::infinity(),
                                                   std::numeric_limits<double>::quiet_NaN())
            << std::endl;

  // 3引数版
  std::cout << "hypot(3.0, 4.0, 2.0) = " << std::hypot(3.0, 4.0, 2.0) << std::endl;
}
  • std::fixed[link ../ios/fixed.md]
  • std::hypot[color ff0000]
  • std::numeric_limits[link ../limits/numeric_limits.md]
  • infinity[link ../limits/numeric_limits/infinity.md]
  • quiet_NaN[link ../limits/numeric_limits/quiet_nan.md]

出力

hypot(0.0, 0.0)  = 0.000000
hypot(1.0, 1.0)  = 1.414214
hypot(3.0, 4.0)  = 5.000000
hypot(+∞, NaN)   = inf
hypot(3.0, 4.0, 2.0) = 5.385165

ベクトルの長さを求める

#include <iostream>
#include <cmath>

// 2次元ベクトル
struct Vector2 {
  double x = 0;
  double y = 0;

  // ベクトルの長さ。
  // ノルム (norm) とも呼ばれる
  double length() const
  {
    return std::hypot(x, y);
  }
};

// 3次元ベクトル
struct Vector3 {
  double x = 0;
  double y = 0;
  double z = 0;

  double length() const
  {
    return std::hypot(x, y, z);
  }
};

int main()
{
  std::cout << Vector2{3.0, 3.0}.length() << std::endl;
  std::cout << Vector3{3.0, 2.0, 4.0}.length() << std::endl;
}
  • std::hypot[color ff0000]

出力

4.24264
5.38516

バージョン

言語

  • C++11

処理系

  • Clang: 2.9 [mark verified], 3.1 [mark verified]
  • GCC: 4.3.4 [mark verified], 4.4.5 [mark verified], 4.5.2 [mark verified], 4.6.1 [mark verified], 4.7.0 [mark verified]
  • Visual C++: 2012 [mark verified], 2013 [mark verified], 2015 [mark verified], 2017 [mark verified]
    • 2002, 2003, 2005, 2008, 2010およびそれ以降では、<math.h>でグローバル名前空間に以下が定義されている。
      • 仮引数・戻り値がfloat型の_hypotf関数が定義されている。
      • 仮引数・戻り値がdouble型のhypot関数と_hypot関数が定義されている。
      • 仮引数・戻り値がlong double型の_hypotlマクロが定義されている。
    • 2010, 2012およびそれ以降では、上記に加え<math.h>でグローバル名前空間に以下が定義されている。
      • 仮引数・戻り値がfloat型のhypotf関数が定義されている。
      • 仮引数・戻り値がlong double型のhypotlマクロが定義されている。
    • 2013以降、_hypotlhypotlは関数として定義されている。

備考

特定の環境では、早期に constexpr 対応されている場合がある:

  • GCC 4.6.1 以上

実装例

fabssqrt があれば、以下のように変換しても求められる。

$$ \sqrt{x^2 + y^2} = \left| u \right| \sqrt{1 + \left( \frac{v}{u} \right)^2} \quad \mathrm{for~all} ; (x, y), ; u = \max(|x|, |y|), ; v = \min(|x|, |y|) $$

参照