-
Notifications
You must be signed in to change notification settings - Fork 2
/
adler32.c
169 lines (150 loc) · 4.93 KB
/
adler32.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
/* adler32.c -- compute the Adler-32 checksum of a data stream
* Copyright (C) 1995-2007 Mark Adler
* For conditions of distribution and use, see copyright notice in zlib.h
*/
/* @(#) $Id$ */
#include "zutil.h"
#define local static
local uLong adler32_combine_(uLong adler1, uLong adler2, z_off64_t len2);
#define BASE 65521UL /* largest prime smaller than 65536 */
#define NMAX 5552
/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
#define DO16(buf) DO8(buf,0); DO8(buf,8);
/* use NO_DIVIDE if your processor does not do division in hardware */
#ifdef NO_DIVIDE
# define MOD(a) \
do { \
if (a >= (BASE << 16)) a -= (BASE << 16); \
if (a >= (BASE << 15)) a -= (BASE << 15); \
if (a >= (BASE << 14)) a -= (BASE << 14); \
if (a >= (BASE << 13)) a -= (BASE << 13); \
if (a >= (BASE << 12)) a -= (BASE << 12); \
if (a >= (BASE << 11)) a -= (BASE << 11); \
if (a >= (BASE << 10)) a -= (BASE << 10); \
if (a >= (BASE << 9)) a -= (BASE << 9); \
if (a >= (BASE << 8)) a -= (BASE << 8); \
if (a >= (BASE << 7)) a -= (BASE << 7); \
if (a >= (BASE << 6)) a -= (BASE << 6); \
if (a >= (BASE << 5)) a -= (BASE << 5); \
if (a >= (BASE << 4)) a -= (BASE << 4); \
if (a >= (BASE << 3)) a -= (BASE << 3); \
if (a >= (BASE << 2)) a -= (BASE << 2); \
if (a >= (BASE << 1)) a -= (BASE << 1); \
if (a >= BASE) a -= BASE; \
} while (0)
# define MOD4(a) \
do { \
if (a >= (BASE << 4)) a -= (BASE << 4); \
if (a >= (BASE << 3)) a -= (BASE << 3); \
if (a >= (BASE << 2)) a -= (BASE << 2); \
if (a >= (BASE << 1)) a -= (BASE << 1); \
if (a >= BASE) a -= BASE; \
} while (0)
#else
# define MOD(a) a %= BASE
# define MOD4(a) a %= BASE
#endif
/* ========================================================================= */
uLong ZEXPORT adler32(adler, buf, len)
uLong adler;
const Bytef *buf;
uInt len;
{
unsigned long sum2;
unsigned n;
/* split Adler-32 into component sums */
sum2 = (adler >> 16) & 0xffff;
adler &= 0xffff;
/* in case user likes doing a byte at a time, keep it fast */
if (len == 1) {
adler += buf[0];
if (adler >= BASE)
adler -= BASE;
sum2 += adler;
if (sum2 >= BASE)
sum2 -= BASE;
return adler | (sum2 << 16);
}
/* initial Adler-32 value (deferred check for len == 1 speed) */
if (buf == Z_NULL)
return 1L;
/* in case short lengths are provided, keep it somewhat fast */
if (len < 16) {
while (len--) {
adler += *buf++;
sum2 += adler;
}
if (adler >= BASE)
adler -= BASE;
MOD4(sum2); /* only added so many BASE's */
return adler | (sum2 << 16);
}
/* do length NMAX blocks -- requires just one modulo operation */
while (len >= NMAX) {
len -= NMAX;
n = NMAX / 16; /* NMAX is divisible by 16 */
do {
DO16(buf); /* 16 sums unrolled */
buf += 16;
} while (--n);
MOD(adler);
MOD(sum2);
}
/* do remaining bytes (less than NMAX, still just one modulo) */
if (len) { /* avoid modulos if none remaining */
while (len >= 16) {
len -= 16;
DO16(buf);
buf += 16;
}
while (len--) {
adler += *buf++;
sum2 += adler;
}
MOD(adler);
MOD(sum2);
}
/* return recombined sums */
return adler | (sum2 << 16);
}
/* ========================================================================= */
local uLong adler32_combine_(adler1, adler2, len2)
uLong adler1;
uLong adler2;
z_off64_t len2;
{
unsigned long sum1;
unsigned long sum2;
unsigned rem;
/* the derivation of this formula is left as an exercise for the reader */
rem = (unsigned)(len2 % BASE);
sum1 = adler1 & 0xffff;
sum2 = rem * sum1;
MOD(sum2);
sum1 += (adler2 & 0xffff) + BASE - 1;
sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
if (sum1 >= BASE) sum1 -= BASE;
if (sum1 >= BASE) sum1 -= BASE;
if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
if (sum2 >= BASE) sum2 -= BASE;
return sum1 | (sum2 << 16);
}
/* ========================================================================= */
uLong ZEXPORT adler32_combine(adler1, adler2, len2)
uLong adler1;
uLong adler2;
z_off_t len2;
{
return adler32_combine_(adler1, adler2, len2);
}
uLong ZEXPORT adler32_combine64(adler1, adler2, len2)
uLong adler1;
uLong adler2;
z_off64_t len2;
{
return adler32_combine_(adler1, adler2, len2);
}