From scratch implementation of GANs and Diffusion deep learning models using PyTorch.
This project implements the ground breaking papers on Generative Adversarial Networks and Diffusion Networks.
Generative Adversarial Networks
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., ... & Bengio, Y. (2020). Generative adversarial networks. Communications of the ACM, 63(11), 139-144.
Diffusion Networks
Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., & Ganguli, S. (2015, June). Deep unsupervised learning using nonequilibrium thermodynamics. In International Conference on Machine Learning (pp. 2256-2265). PMLR.
OS X & Linux:
pip install -r requirements
Unit tests check the backbones and building blocks of the neural networks.
python test.py
These are the arguments taken by the main.py script.
-h, --help show this help message and exit
-epoch EPOCH Number of epochs.
-timesteps TIMESTEPS Number of timesteps.
-batch_size BATCH_SIZE
Batch size.
-lr LR Learning Rate.
-latent_vs LATENT_VS Latent vector size.
-model MODEL Choose model to train.
-dataset DATASET Choose dataset.
To train the model you can run.
python main.py
Carlos Gustavo Salas Flores – LinkedIn – yuseicarlos2560@gmail.com
Distributed under the MIT license. See LICENSE.txt
for more information.