-
Notifications
You must be signed in to change notification settings - Fork 3
/
dsvarratio3.m
238 lines (200 loc) · 6.75 KB
/
dsvarratio3.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
function dsvarratio3
% DSVARRATIO3
%
% Plots the variance ratio of the eigenvalue-weighted multitaper variance
% to the whole-sky estimate
%
% Last modified by fjsimons-at-alum.mit.edu, 02/07/2007
% LATER ON REWRITE THIS TO USE THE NEW FUNCTION MVARRATIOS
Lmax=50;
l=0:Lmax;
% Various bandwidths to be plotted down the panel rows
EL=[10 20];
% Single-cap parameters per bandwidth
TH{1}=[15 20 30 60];
TH{2}=[15 20 30 60];
% Double-cap parameters per bandwidth, stuff to subtract
TH2{1}=90-[40 50 60 80];
TH2{2}=90-[40 50 60 80];
% The maximum value on the y-axis
ymax=[1.8 1.4];
ymax2=[0.22 0.13];
clf
% Create figure panels
[ah,ha]=krijetem(subnum(length(EL),2));
% Must do this before the plot since the caplogo comes last
serre(ha(1:2),1/2,'down')
serre(ha(3:4),1/2,'down')
serre(ah(1:2),1/4,'across')
serre(ah(3:4),1/4,'across')
% Make the panels
[xl(1),yl(1),px{1},pl(1),p{1}]=...
doit(EL(1), TH{1},1,Lmax,ah(1),ymax(1),l);
[xl(2),yl(2),px{2},pl(2),p{2}]=...
doit(EL(1),TH2{1},2,Lmax,ah(2),ymax2(1),l);
[xl(3),yl(3),px{3},pl(3),p{3}]=...
doit(EL(2), TH{2},1,Lmax,ah(3),ymax(2),l);
[xl(4),yl(4),px{4},pl(4),p{4}]=...
doit(EL(2),TH2{2},2,Lmax,ah(4),ymax2(2),l);
% And plot
set(gcf,'color','w','inverthardcopy','off')
fig2print(gcf,'portrait')
% What's shown here is the empirical rule with the 0.88 exponent which
% works at all degrees, as soon as A is big enough
%delete(pl)
delete(xl([1 2]))
delete(yl([2 4]))
nolabels(ah(1:2),1)
figdisp([],[],[],0)
!degs /home/fjsimons/EPS/dsvarratio3.eps
disp('Rerun if it doesn''t look quite right')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [xl,yl,px,pl,p]=doit(L,TH,sord,Lmax,ah,ymax,l)
% Note it ALWAYS does the essential checks even with this to 0
defval('xver',0)
% Get all the ZEROJ coefficients at the same time... not a huge timesaver
[allW,C0,S0,Leff]=zeroj(repmat(0:2:2*L,1,Lmax+1),...
gamini(0:Lmax,L+1),gamini(0:Lmax,L+1));
% The next verification can be slow and is rarely necessary
if xver==1 & 1==3
difer(allW-threej(repmat(0:2:2*L,1,Lmax+1),...
gamini(0:Lmax,L+1),gamini(0:Lmax,L+1)));
end
% Calculate the matrix that goes into this - this takes most of the time
% Always only get the evens since we're studying l=l, the variance
[Gp,p,K]=gammap(L,TH,sord,1,1);
% Make the whole-sphere (WS) approximation: NOTE THIS IS THE A=4pi
% MULTITAPER and not the UNTAPERED WS result
bigS=gamini([0:L],(L+1))';
bigSp=repmat([0:L]',(L+1),1);
GpWS=repmat(NaN,1,2*L);
% Rather, keep the ones that you had already!
if Leff<2*L
[jk,C0,S0]=zeroj(0,0,0,2*L);
Leff=2*L;
end
for pWS=0:2:2*L
GpWS(pWS+1)=sum((2*bigS'+1).*(2*bigSp'+1).*...
zeroj(bigS,pWS,bigSp,Leff,[],C0,S0).^2);
end
% This must be exact when compared to gammap(4*pi)
GpWS=GpWS(1:2:end)*4*pi/(L+1)^4;
if xver==1
% Under the single cap thing: single cap of entire globe
difer(GpWS-gammap(L,180,1,1,1));
disp('Check for WHOLE-SPHERE from single cap passed')
% Under the double cap thing: subtract belt of nothing
difer(GpWS-gammap(L,0,2,1,1));
disp('Check for WHOLE-SPHERE from double cap passed')
end
% Better focus exclusively on those for which K>1 at least
Gp=Gp(K>=1,:); TH=TH(K>=1); K=K(K>=1);
% Only now initialize v and its approximations
v=repmat(NaN,length(TH),length(l));
vll=repmat(NaN,length(TH),1);
vWS=repmat(NaN,1,length(l));
% Better get all of the wigner0j symbols at once here
for ixl=1:length(l)
% Now we're here, we can do slightly more right away:
if xver==1
% Calculate and verify
[W,pp]=wigner0j(2*L,l(ixl),l(ixl));
difer(p-pp(1:2:end))
difer(allW((L+1)*l(ixl)+1:(L+1)*(l(ixl)+1))-W(1:2:end))
W=W(1:2:end);
else
% Stick with the one-blow precalculated ones
W=allW((L+1)*l(ixl)+1:(L+1)*(l(ixl)+1));
end
% Only select the evens since we're doing variance at equal l=l'
% And calculate the multitaper covariance ratio
% For the single cap
v(:,ixl)=(2*l(ixl)+1)/(4*pi)*[repmat(2*p+1,length(TH),1).*Gp]*[W.^2]';
vWS(ixl)=(2*l(ixl)+1)/(4*pi)*[repmat(2*p+1,1,1).*GpWS]*[W.^2]';
end
if xver==1
% What should the zero-l limit be?
bigS=gamini([0:L],(L+1))';
bigSp=repmat([0:L]',(L+1),1);
vzl=repmat(NaN,1,length(TH));
for inx=1:length(TH)
for e=0:2*L
eB(e+1,1)=sum([2*bigS'+1].*[2*bigSp'+1].*...
zeroj(bigS,e,bigSp,Leff,[],C0,S0).^2);
end
% For the single/double cap
[BeL(inx,:),dels]=bpboxcap(TH(inx),2*L,[],0,sord);
vzl(inx)=1/4/pi/K(inx)^2*[(2*[0:2*L]+1).*BeL(inx,:)]*eB;
end
% Compare just for good measure
difer(vzl'-v(:,1))
disp('Check for zero-l passed')
% Another check for the zero-l
for inx=1:length(TH)
[G,V,EL,EM,KN]=glmalpha(90*(sord==2)+(-1)^(sord+1)*TH(inx),L,sord);
Vzchk(inx)=sum(V.^2)/sum(V)^2;
end
difer(Vzchk'-v(:,1))
disp('Another check for zero-l passed')
end
% Now do the numerical checks
% What should the large-l limit be? Use the Legendre functions
vll=[1/(4*pi)*[repmat(2*p+1,length(TH),1).*Gp]*plm(0:2:2*L,0,0).^2]';
yt=sprintf('multitaper variance ratio');
xt=sprintf('degree l');
axes(ah)
% Plot large-l limit
px=plot([0 l(end)],...
repmat(round(sort(vll)*10^(sord+1))/10^(sord+1),2,1),...
'Col',grey);
hold on
% Plot large-area limit
%pl=plot(l,vWS,'Col',grey);
% This is where you can explicitly test that the approximation works
Ato4pi=K/(L+1)^2;
% This is the empirical exponent quoted in the paper
empirex=0.88;
plxtra=plot(l,repmat(vWS,length(TH),1)./...
repmat(Ato4pi.^empirex,1,length(l)),'Col',grey);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%pd=plot(l(end),1./(2*L+1),'k+');
pl=plot(l(end),vWS(end),'o','MarkerS',3,'MarkerE','k','MarkerF','w');
% Plot actual variance ratio
p=plot(l,v,'k','Linew',1);
xmax=l(end);
ymin=0;
% New ymax
ymax=round(max(v(:)*1.15)*10^(sord+1))/10^(sord+1);
ytix=sort([1 ymin ymax]);
ytix=unique([round(vll*10^(sord+1))/10^(sord+1) ymax ymin]);
ylims=[ymin ymax];
ylabs=num2cell(ytix);
% Complete faking
if ylabs{3}==0.5
ylabs{3}='0.50';
elseif ylabs{end}==0.22
ylabs{end}='0.220';
end
%ylabs{1}=sprintf('1/(L+1)%s',str2mat(178));
pp=plot([L L],[0 ymax],'k:');
set(ah,'Ytick',ytix,'Ylim',ylims,'ytickl',ylabs,'xlim',[0 xmax])
longticks(ah(1))
set(p,'marker','o','markers',2,'lines','none',...
'markerfacec','k','markere','k','lines','-','linew',0.5)
yl=ylabel(yt);
xl=xlabel(xt);
[b,t]=boxtex('ur',ah(1),sprintf('L = %i',L),12,1,0.85,1.15);
% Produce right labels etc - need symbol font, keep it for last
[THsort,i]=sort(TH,'descend'); K=K(i);
for in=1:length(THsort)
funlob{in}=sprintf('%s = %i%s K = %i','\Theta',...
90*(sord==2)+(-1)^(sord+1)*THsort(in),...
str2mat(176),round(K(in)));
% tx(in)=text(34.5-(sord==2),v(i(in),end)+(ymax-ymin)/20,funlob{in});
tx(in)=text(33.5,v(i(in),end)+(ymax-ymin)/20,funlob{in});
end
set(tx,'HorizontalA','left','FontS',8)
set(ah,'box','on')
lah=caplogo(ah,sord+(sord==2),'ur');
movev(lah,-0.053)
moveh(lah,-0.075)