-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmcoupling.m
114 lines (105 loc) · 3.56 KB
/
mcoupling.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
function [MG,V,N,MH]=mcoupling(TH,L,Lmax,sord)
% [MG,V,N,MH]=mcoupling(TH,L,Lmax,sord)
%
% Calculates the mode-coupling matrix for single- and multi-taper
% analysis of axisymmetric single or double polar caps. The estimated
% spectrum out to degree Lmax is the true spectrum linearly transformed
% by this (Lmax+1)X(Lmax+1) matrix, which contains the effect of a
% degree-L taper. Dahlen and Simons 2008 eq. (131).
%
% INPUT
%
% TH Angular extent of the spherical cap, in degrees OR
% L Bandwidth (maximum angular degree) of the taper
% Lmax Bandwidth (maximum angular degree) of the spectrum
% sord 1 Single polar cap of diameter TH [default]
% 2 Double polar cap of diameter 2TH
%
% OUTPUT:
%
% MG A three-dimensional array with the (L+1)^2 single-taper
% couplings; the number of tapers is the third dimension; for
% the bandlimited tapers
% V The sorted eigenvalues belonging to every one of the tapers
% N The Shannon number
% MH Same, but for the space-limited tapers
%
% EXAMPLE:
%
% MG=mcoupling; tn=1;
% for l=0:100 ; plot([0:100],MG(l+1,:,tn),'-o');
% grid on; ylim(minmax(MG(:,:,tn))); longticks(gca,2)
% set(gca,'xtick',unique([0 max(0,l-18) l min(l+18,100) 100]));
% pause; end
%
% See also: MCOUPLINGS
%
% Last modified by fjsimons-at-alum.mit.edu, 05/16/2007
defval('TH',10)
defval('L',18)
defval('Lmax',100)
defval('xver',1)
defval('sord',1)
fname=fullfile(getenv('IFILES'),'MCOUPLING',...
sprintf('MCOUPLING-%i-%i-%i-%i.mat',TH,L,Lmax,sord));
if exist(fname)==2
disp(sprintf('load %s',fname))
load(fname)
else
% First get the sum over all orders of the square of the coefficients
% of all tapers, collected per taper (A) and per order (L) in GAL
[G,V,EL,EM,N,GAL]=glmalpha(TH,L,sord);
% You'll want to sort this
[V,i]=sort(V,'descend');
GAL=GAL(i,:);
if nargout>3
[H,V,EL,EM,N,HAL]=hlmalpha(TH,L,2*Lmax,sord);
HAL=HAL(i,:);
MH=repmat(NaN,[Lmax+1 Lmax+1 (L+1)^2]);
end
% Initialize matrix
MG=repmat(0,[Lmax+1 Lmax+1 (L+1)^2]);
h=waitbar(0,'MCOUPLING: Doing the sums, be patient');
% Do the upper triangular half of the coupling matrix
for l=0:Lmax
for lp=max(0,l-L):l
% Don't divide by 4pi since we've already done that in GLMALPHA by
% normalizing to one; instead of by normalizing to 4pi and then
% dividing. The column dimension is the taper number now
% Note that the GAL already contains the (2l+1), i.e. we really
% need the total power and not the power spectral density
WAG=wigner0j(L,l,lp).^2*GAL';
% To check the unbiasedness...
% Note that (2*[0:L]+1).*wigner0j(L,l,lp) only sums to one if
% L=l+lp; but sum(2*[0:2*Lmax]+1).*wigner0j(2*Lmax,l,lp)==1
% Fill the elements; this part is symmetric (the kernel is NOT)
MG(l+1,lp+1,:)=WAG;
MG(lp+1,l+1,:)=WAG;
if nargout>3
WAH=wigner0j(2*Lmax,l,lp).^2*HAL';
MH(l+1,lp+1,:)=WAH;
MH(lp+1,l+1,:)=WAH;
end
end
waitbar(lp/(Lmax+1),h)
end
close(h)
% Don't forget about the (2l'+1) for the column dimensions
MG=MG.*repmat(2*[0:Lmax]+1,[Lmax+1 1 (L+1)^2]);
if nargout>3
MH=MH.*repmat(2*[0:Lmax]+1,[Lmax+1 1 (L+1)^2]);
else
MH=NaN;
end
eval(sprintf('save %s MG MH TH L Lmax V N',fname))
end
% Excessive verification
if xver==1
M1=zeros(Lmax+1);
for index=1:length(V)
M1=M1+MG(:,:,index)*V(index)/sum(V);
end
% Compare with the analytic formula of the eigenvalue-weighted sum
difer(M1-mcouplings(L,Lmax),[],[],'MCOUPLING: Check passed');
% Should perhaps verify that the sum(M,2) is one until Lmax-L?
end