-
Notifications
You must be signed in to change notification settings - Fork 10
/
reid.m
166 lines (141 loc) · 4.87 KB
/
reid.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
function varargout=reid(mag,MlMb,Del,f,phi,alphar,betar,alphaw,rhow,P0)
% [P,theta]=REID(mag,MlMb,Del,f,phi,alphar,betar,alphaw,rhow,P0)
%
% Calculates the pressure of an earthquake of a given magnitude
%
% INPUT:
%
% mag 'Mb' for body-wave teleseismic magnitude (GUTENBERGRICHTER)
% 'Ml' for local magnitude (WOODANDERSON)
% MlMb Relevant magnitude of the event
% Del Epicentral distance (in degrees)
% f Frequency of the incoming wave, in Hz [defaults: 1 or 5]
% phi Incidence angles with the normal [degrees, defaults: 90 90 or horizontal]
% alphar P-wave speed in the rock in m/s [default: 5800 m/s for IASP91]
% betar S-wave speed in the rock in m/s [default: 3360 m/s for IASP91]
% alphaw P-wave speed in water in m/s [default: 1500 m/s]
% rhow Density of the water in kg/m^3 [default: 1000 kg/m3]
% P0 Reference pressure (cruising pressure, in dbar, default 700)
%
% OUTPUT:
%
% P(1) Pressure of the incoming wave P-wave, in Pa (=10 mubar)
% P(2) Pressure of the incoming wave S-wave, in Pa (=10 mubar)
% theta(1) Outgoing angle of the incoming P-wave, in degrees
% theta(2) Outgoing angle of the incoming S-wave, in degrees
%
% EXAMPLE:
%
% "Refute" the likely "error" of Reid (1973).
%
% reid('Ml',0,10/fralmanac('DegDis')*1000,20)
%
% SEE ALSO: WOODANDERSON, GUTENBERGRICHTER
%
% Last modified by fjsimons-at-alum.mit.edu, 03/03/20201
%
% REFERENCES:
%
% Reid, GJRAS 1973, correcting a typo on their page 367, and
% noticing other errors.
% Simons et al., JGR 2009, doi:10.1029/2008JB006088, used for equation
% references below
defval('MlMb',0)
defval('Del',10/fralmanac('DegDis')*1000)
defval('dispo',1)
if Del*fralmanac('DegDis')/1000<600
defval('mag','Ml')
else
defval('mag','Mb')
end
defval('alphar',5800) % Reid has 6000
defval('phi',[90 90])
defval('betar',3360) % Reid has alphar/sqrt(3) for Poisson solid
defval('alphaw',1500)
defval('rhow',1000)
defval('P0',700)
if dispo==1
clc
end
% Rough ground motion amplitude for these parameters, in m
switch mag
case 'Mb'
defval('f',1)
A=gutenbergrichter(MlMb,Del,1/f)/1e6;
if dispo==1
disp(sprintf('d= %i km ; Using GUTENBERGRICHTER displacement amplitude',...
round(Del*fralmanac('DegDis')/1000)))
end
case 'Ml'
defval('f',5)
A=woodanderson(MlMb,Del)/1e6;
if dispo==1
disp(sprintf('d= %i km ; using WOODANDERSON for displacement amplitude',...
round(Del*fralmanac('DegDis')/1000)))
end
end
if dispo==1
disp(sprintf('Incidence angles are %5.3f and %5.3f degrees',phi(1),phi(2)));
end
% Convert incidence angle to radians
phi=phi*pi/180;
% Now we have the predicted "amplitude" but certainly need to modify this
% to take into account the incidence angle
A=A*cos(phi);
if dispo==1
% Display frequency
disp(sprintf('Frequency is %3.1f Hz',f))
% Display amplitude
disp(sprintf('Ground motion amplitude for P is %3.2e m or %5.3f micrometer or %i nm (millimicron)',...
A(1),A(1)*1e6,round(A(1)*1e9)))
disp(sprintf('Ground motion amplitude for S is %3.2e m or %5.3f micrometer or %i nm (millimicron)',...
A(2),A(2)*1e6,round(A(2)*1e9)))
end
% Angular frequency
omega=2*pi*f;
% Snells's law sits in here to calculate the upcoming angles in the water
theta=asin(alphaw./[alphar betar].*sin(phi));
if dispo==1
% Display theta
disp(sprintf(...
'The takeoff angles in the water are %4.1f and %4.1f degrees for P and S',...
theta*180/pi));
end
% Pressure amplification of the amplitude of the incoming pulse
% (Simons et al. equation 1)
P=rhow*alphaw*omega./cos(theta);
% And this is pressure in Pa=10^{-5} bars=10^{-4} dbar=10^{-2} mbar= 10 microbar
P=P.*A;
% Convert to degrees
theta=theta*180/pi;
% Convert cruising pressure to Pa from dbar, 1 Pa = 1e-4 dbar
P0=P0*1e4;
% Display cruising/reference depth in m
d=P0/rhow/fralmanac('GravAcc');
if dispo==1
display(sprintf('Cruising (reference) depth is %8.3f m',d))
end
% Now realize we actually get the pressure in decibar and that 1 decibar
% equals about one meter, and 1 decibar equals 10^4 Pa.
% And the ratios of both pressures.
Prat=P/P0;
if dispo==1
% Display results
display(sprintf('Pressure of P and S %8.3f and %8.3f mm(H20)',P/10))
display(sprintf(' %8.3f and %8.3f Pa',P))
display(sprintf(' %8.3f and %8.3f microbar',P*10))
display(sprintf('Cruising pressure P0 %7.2e Pa or %5.1f dbar',P0,P0/1e4))
display(sprintf('Pressure ratios to P0 %3.1e and %3.1e',Prat))
display(sprintf('Pressure ratios to P0 %i and %i dB re P0',...
round(20*log10(Prat/P0))))
disp(' ')
end
% But really, what matters, is the Pa with respect to the self-noise
% level or the bobbing about.
% Optional output
varns={P,theta};
varargout=varns(1:nargout);
% NOW PUT IN THE RIGHT RAY PARAMETER !! AND CHECK THAT THE UNITS OF
% DISPLACEMENT ... ARE REMOTELY RIGHT ... E.G. CROSS CHECK WITH WU AND
% ZHAO.
%pause