-
Notifications
You must be signed in to change notification settings - Fork 0
/
rbm_test.cpp
223 lines (154 loc) · 4.81 KB
/
rbm_test.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
#include <stdio.h>
#include <signal.h>
#include <unistd.h>
#include <string.h>
#include <dinrhiw/dinrhiw.h>
#include <iostream>
#include <vector>
volatile bool stopsignal = false;
void install_signal_handler();
int main(int argc, char** argv)
{
printf("RBM MIDI NOTES MODEL\n");
install_signal_handler();
whiteice::dataset<> db;
if(db.load("models/midinotes.ds") == false){
printf("ERROR: Couldn't load database\n");
return -1;
}
printf("Converting data to timeseries format..\n");
std::vector< std::vector< whiteice::math::vertex<> > > timeseries;
timeseries.resize(db.getNumberOfClusters());
unsigned int datapoints = 0;
for(unsigned int i=0;i<db.getNumberOfClusters();i++){
std::vector< whiteice::math::vertex<> >& ts = timeseries[i];
for(unsigned int k=0;k<db.size(i);k++){
// we convert full-range 128 MIDI notes
// to use 3 octaves instead C-4, C-5 and C-6 (3*12 = 36) 48..83
auto& note = db.access(i,k);
whiteice::math::vertex<> n(36);
for(unsigned int i=48;i<84;i++){
n[i-48] = note[i];
}
ts.push_back(n);
datapoints++;
}
}
// whiteice::RNN_RBM<> rbm(128, 16, 2);
whiteice::RNN_RBM<> rbm(36, 16, 2);
bool hasRBM = false;
if(argc > 1){
if(strcmp(argv[1], "--load") == 0){
if(rbm.load("models/midi-rbm-rnn.conf") == false){
printf("ERROR: loading RNN-RBM failed.\n");
return -1;
}
hasRBM = true;
printf("Loaded RNN-RBM from disk.\n");
}
}
printf("STARTING RNN-RBM (%d datapoints)...\n", datapoints);
printf("RNN-RBM %dx%dx%d\n",
rbm.getVisibleDimensions(),
rbm.getHiddenDimensions(),
rbm.getRecurrentDimensions());
if(rbm.startOptimize(timeseries, !hasRBM) == false){
printf("ERROR: starting RNN-RBM optimizer FAILED.\n");
return -1;
}
unsigned int iters = 0;
while(rbm.isRunning() && !stopsignal){
whiteice::math::blas_real<float> e;
const unsigned int old_iters = iters;
if(rbm.getOptimizeError(iters, e)){
if(iters != old_iters){
printf("%d ITER. ERROR: %f\n", iters, e.c[0]);
fflush(stdout);
}
}
else{
printf("ERROR: RNN_RBM::getOptimizeError() failed.\n");
return -1;
}
}
printf("Stopping RNN-RBM optimization..\n");
rbm.stopOptimize();
if(rbm.save("models/midi-rbm-rnn.conf") == false){
printf("ERROR: saving RNN-RBM FAILED.\n");
}
return 0;
}
void sigint_signal_handler(int s)
{
stopsignal = true;
}
void install_signal_handler()
{
#ifndef WINOS
struct sigaction sih;
sih.sa_handler = sigint_signal_handler;
sigemptyset(&sih.sa_mask);
sih.sa_flags = 0;
sigaction(SIGINT, &sih, NULL);
#endif
}
#if 0
int main(int argc, char** argv)
{
printf("RBM MIDI NOTES MODEL\n");
// number of hidden nodes in RBM networks
const int HIDDEN = 10; // was 50
// loads examples database
whiteice::dataset<> db;
if(db.load("models/midinotes.ds") == false){
printf("ERROR: Couldn't load database.");
return -1;
}
if(db.getNumberOfClusters() != 2){
printf("ERROR: Bad database.\n");
return -1;
}
if(db.size(0) != db.size(1) || db.size(0) == 0){
printf("ERROR: Bad database.\n");
return -1;
}
printf("%d training samples loaded\n", db.size(0));
std::vector<unsigned int> inputArch, outputArch;
inputArch.push_back(db.dimension(0));
inputArch.push_back(HIDDEN); // db.dimension(0)*2);
inputArch.push_back(HIDDEN);
outputArch.push_back(db.dimension(1));
outputArch.push_back(HIDDEN); // db.dimension(1)*2);
outputArch.push_back(HIDDEN);
whiteice::DBN<> inputRBM(inputArch);
whiteice::DBN<> outputRBM(outputArch);
std::vector< whiteice::math::vertex<> > input_samples;
std::vector< whiteice::math::vertex<> > output_samples;
for(unsigned int i=0;i<db.size(0);i++){
input_samples.push_back(db.access(0,i));
output_samples.push_back(db.access(1,i));
}
inputRBM.initializeWeights();
outputRBM.initializeWeights();
//////////////////////////////////////////////////////////////////////
// now we learn GB-RBM weights
printf("INPUT architecture: %dx%dx%d\n",
inputArch[0], inputArch[1], inputArch[2]);
printf("Learning RBM weights (gradient descent data maximum likelihood)..\n");
fflush(stdout);
whiteice::math::blas_real<float> dW = 0.0001;
inputRBM.learnWeights(input_samples, dW, true);
if(inputRBM.save("temp/midi-input-nnetwork.conf") == false){
printf("ERROR: saving RBM network failed.\n");
}
printf("OUTPUT architecture: %dx%dx%d\n",
outputArch[0], outputArch[1], outputArch[2]);
printf("Learning RBM weights (gradient descent data maximum likelihood)..\n");
fflush(stdout);
outputRBM.learnWeights(output_samples, dW, true);
if(outputRBM.save("temp/midi-output-nnetwork.conf") == false){
printf("ERROR: saving RBM network failed.\n");
}
return 0;
}
#endif