-
Notifications
You must be signed in to change notification settings - Fork 0
/
model_extract_noise.py
169 lines (141 loc) · 5.63 KB
/
model_extract_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from numpy.core.defchararray import count
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torch.backends.cudnn as cudnn
import numpy as np
import torchvision
import torchvision.transforms as transforms
import os
import time
import cv2
import random
from tqdm import tqdm
from torch.optim.lr_scheduler import MultiStepLR, CosineAnnealingLR
from pytorch_grad_cam.utils.image import show_cam_on_image, \
deprocess_image, \
preprocess_image
from data_loader import TinyImageNet
from models import *
device = 'cuda' if torch.cuda.is_available() else 'cpu'
best_acc = 0 # best test accuracy
start_epoch = 0 # start from epoch 0 or last checkpoint epoch
total_epoch = 150
batch_size = 128
# Data
print('==> Preparing data..')
transform_train = transforms.Compose([
transforms.RandomCrop(64, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.4802, 0.4481, 0.3975), (0.2770, 0.2691, 0.2821)),
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.4802, 0.4481, 0.3975), (0.2770, 0.2691, 0.2821)),
])
data_dir = 'tiny-imagenet-200/'
dataset_train = TinyImageNet(data_dir, train=True, transform=transform_train)
dataset_val = TinyImageNet(data_dir, train=False, transform=transform_test)
# trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(dataset_train, batch_size=batch_size, shuffle=True, num_workers=2)
# testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(dataset_val, batch_size=batch_size, shuffle=False, num_workers=2)
wmloader = None
# Model
print('==> Building model..')
net_victim = ResNet18()
net_surrogate = ResNet18()
net_victim = net_victim.to(device)
net_surrogate = net_surrogate.to(device)
# print(net)
if 'cuda' in device:
# net = torch.nn.DataParallel(net)
cudnn.benchmark = True
print("with pretrained model")
model_name = 'ckpt.pth'
print("test model: ", model_name)
net_victim.load_state_dict(torch.load(model_name, map_location=device))
net_victim.eval()
criterion = nn.CrossEntropyLoss()
criterion_model_extraction = nn.MSELoss()
optimizer = optim.SGD(net_surrogate.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
scheduler = MultiStepLR(optimizer, milestones=[40, 80, 120], gamma=0.1)
# Training
def train(epoch):
start_time = time.time()
net_surrogate.train()
train_loss = 0
correct = 0
correct_extraction = 0
total = 0
# idx = random.randint(1,100)
wminputs, wmtargets = [], []
if wmloader:
for wm_idx, (wminput, wmtarget) in enumerate(wmloader):
wminput, wmtarget = wminput.to(device), wmtarget.to(device)
wminputs.append(wminput)
wmtargets.append(wmtarget)
# the wm_idx to start from
wm_idx = np.random.randint(len(wminputs))
for batch_idx, (inputs, targets) in enumerate(tqdm(trainloader)):
inputs, targets = inputs.to(device), targets.to(device)
if wmloader:
inputs = torch.cat([inputs, wminputs[(wm_idx + batch_idx) % len(wminputs)]], dim=0)
targets = torch.cat([targets, wmtargets[(wm_idx + batch_idx) % len(wminputs)]], dim=0)
noise = torch.randn_like(inputs) * 0.1
inputs = inputs + noise
victim_outputs = net_victim(inputs)
# print(victim_outputs.shape)
surrogate_outputs = net_surrogate(inputs)
optimizer.zero_grad()
# victim_outputs = net_victim(noise)
# # print(victim_outputs.shape)
# surrogate_outputs = net_surrogate(noise)
loss = criterion_model_extraction(surrogate_outputs, victim_outputs)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, surrogate_predicted = surrogate_outputs.max(1)
_, victim_predicted = victim_outputs.max(1)
total += targets.size(0)
correct += surrogate_predicted.eq(targets).sum().item()
correct_extraction += surrogate_predicted.eq(victim_predicted).sum().item()
end_time = time.time()
print('TrainLoss: %.3f | Extract Acc: %.3f%% (%d/%d) | Time Elapsed %.3f sec' % \
(train_loss/(batch_idx+1), \
100.*correct_extraction/total, correct_extraction, total, \
end_time-start_time))
def test(epoch):
global best_acc
net_surrogate.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net_surrogate(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('TestLoss: %.3f | TestAcc: %.3f%% (%d/%d)' % (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# Save checkpoint.
acc = 100.*correct/total
# if acc > best_acc:
time_stamp = time.strftime('%Y%m%d%H%M%S', time.localtime(time.time()))
print('Saving..')
if not os.path.isdir('checkpoint/modelExtract/bynoise'):
os.mkdir('checkpoint/modelExtract/bynoise')
torch.save(net_surrogate.state_dict(), f'./checkpoint/modelExtract/bynoise/ckpt_{time_stamp}.pth')
best_acc = acc
for epoch in range(start_epoch, total_epoch):
print('Epoch {}/{}'.format(epoch + 1, total_epoch))
print('-' * 10)
train(epoch)
test(epoch)
print()
scheduler.step()