diff --git a/contracts/mocks/newton_y_large_gamma.vy b/contracts/mocks/newton_y_large_gamma.vy new file mode 100644 index 00000000..13d55ae9 --- /dev/null +++ b/contracts/mocks/newton_y_large_gamma.vy @@ -0,0 +1,102 @@ +# Minimized version of the math contracts before the gamma value expansion. +# Additionally to the final value it also returns the number of iterations it took to find the value. +# For testing purposes only. +# From commit: 6dec22f6956cc04fb865d93c1e521f146e066cab + +N_COINS: constant(uint256) = 2 +A_MULTIPLIER: constant(uint256) = 10000 + +MIN_GAMMA: constant(uint256) = 10**10 +MAX_GAMMA_SMALL: constant(uint256) = 2 * 10**16 +MAX_GAMMA: constant(uint256) = 3 * 10**17 + +MIN_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER / 10 +MAX_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER * 1000 + +@internal +@pure +def _newton_y(ANN: uint256, gamma: uint256, x: uint256[N_COINS], D: uint256, i: uint256, lim_mul: uint256) -> (uint256, uint256): + """ + Calculating x[i] given other balances x[0..N_COINS-1] and invariant D + ANN = A * N**N + This is computationally expensive. + """ + + x_j: uint256 = x[1 - i] + y: uint256 = D**2 / (x_j * N_COINS**2) + K0_i: uint256 = (10**18 * N_COINS) * x_j / D + + assert (K0_i >= unsafe_div(10**36, lim_mul)) and (K0_i <= lim_mul) # dev: unsafe values x[i] + + convergence_limit: uint256 = max(max(x_j / 10**14, D / 10**14), 100) + + for j in range(255): + y_prev: uint256 = y + + K0: uint256 = K0_i * y * N_COINS / D + S: uint256 = x_j + y + + _g1k0: uint256 = gamma + 10**18 + if _g1k0 > K0: + _g1k0 = _g1k0 - K0 + 1 + else: + _g1k0 = K0 - _g1k0 + 1 + + # D / (A * N**N) * _g1k0**2 / gamma**2 + mul1: uint256 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN + + # 2*K0 / _g1k0 + mul2: uint256 = 10**18 + (2 * 10**18) * K0 / _g1k0 + + yfprime: uint256 = 10**18 * y + S * mul2 + mul1 + _dyfprime: uint256 = D * mul2 + if yfprime < _dyfprime: + y = y_prev / 2 + continue + else: + yfprime -= _dyfprime + fprime: uint256 = yfprime / y + + # y -= f / f_prime; y = (y * fprime - f) / fprime + # y = (yfprime + 10**18 * D - 10**18 * S) // fprime + mul1 // fprime * (10**18 - K0) // K0 + y_minus: uint256 = mul1 / fprime + y_plus: uint256 = (yfprime + 10**18 * D) / fprime + y_minus * 10**18 / K0 + y_minus += 10**18 * S / fprime + + if y_plus < y_minus: + y = y_prev / 2 + else: + y = y_plus - y_minus + + diff: uint256 = 0 + if y > y_prev: + diff = y - y_prev + else: + diff = y_prev - y + + if diff < max(convergence_limit, y / 10**14): + return y, j + + raise "Did not converge" + + +@external +@pure +def newton_y(ANN: uint256, gamma: uint256, x: uint256[N_COINS], D: uint256, i: uint256) -> (uint256, uint256): + + # Safety checks + assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A + assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma + assert D > 10**17 - 1 and D < 10**15 * 10**18 + 1 # dev: unsafe values D + lim_mul: uint256 = 100 * 10**18 # 100.0 + if gamma > MAX_GAMMA_SMALL: + lim_mul = unsafe_div(unsafe_mul(lim_mul, MAX_GAMMA_SMALL), gamma) # smaller than 100.0 + + iterations: uint256 = 0 + y: uint256 = 0 + + y, iterations = self._newton_y(ANN, gamma, x, D, i, lim_mul) + frac: uint256 = y * 10**18 / D + assert (frac >= unsafe_div(10**36 / N_COINS, lim_mul)) and (frac <= unsafe_div(lim_mul, N_COINS)) # dev: unsafe value for y + + return y, iterations diff --git a/contracts/mocks/newton_y_small_gamma.vy b/contracts/mocks/newton_y_small_gamma.vy new file mode 100644 index 00000000..a1c5a2b5 --- /dev/null +++ b/contracts/mocks/newton_y_small_gamma.vy @@ -0,0 +1,95 @@ +# Minimized version of the math contracts before the gamma value expansion. +# Additionally to the final value it also returns the number of iterations it took to find the value. +# For testing purposes only. +# From commit: 1c800bd7937f63a9c278a220af846d322f356dd5 + +N_COINS: constant(uint256) = 2 +A_MULTIPLIER: constant(uint256) = 10000 + +MIN_GAMMA: constant(uint256) = 10**10 +MAX_GAMMA: constant(uint256) = 2 * 10**15 + +MIN_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER / 10 +MAX_A: constant(uint256) = N_COINS**N_COINS * A_MULTIPLIER * 1000 + +@internal +@pure +def _newton_y(ANN: uint256, gamma: uint256, x: uint256[N_COINS], D: uint256, i: uint256) -> uint256: + """ + Calculating x[i] given other balances x[0..N_COINS-1] and invariant D + ANN = A * N**N + This is computationally expensive. + """ + + x_j: uint256 = x[1 - i] + y: uint256 = D**2 / (x_j * N_COINS**2) + K0_i: uint256 = (10**18 * N_COINS) * x_j / D + + assert (K0_i > 10**16*N_COINS - 1) and (K0_i < 10**20*N_COINS + 1) # dev: unsafe values x[i] + + convergence_limit: uint256 = max(max(x_j / 10**14, D / 10**14), 100) + + for j in range(255): + y_prev: uint256 = y + + K0: uint256 = K0_i * y * N_COINS / D + S: uint256 = x_j + y + + _g1k0: uint256 = gamma + 10**18 + if _g1k0 > K0: + _g1k0 = _g1k0 - K0 + 1 + else: + _g1k0 = K0 - _g1k0 + 1 + + # D / (A * N**N) * _g1k0**2 / gamma**2 + mul1: uint256 = 10**18 * D / gamma * _g1k0 / gamma * _g1k0 * A_MULTIPLIER / ANN + + # 2*K0 / _g1k0 + mul2: uint256 = 10**18 + (2 * 10**18) * K0 / _g1k0 + + yfprime: uint256 = 10**18 * y + S * mul2 + mul1 + _dyfprime: uint256 = D * mul2 + if yfprime < _dyfprime: + y = y_prev / 2 + continue + else: + yfprime -= _dyfprime + fprime: uint256 = yfprime / y + + # y -= f / f_prime; y = (y * fprime - f) / fprime + # y = (yfprime + 10**18 * D - 10**18 * S) // fprime + mul1 // fprime * (10**18 - K0) // K0 + y_minus: uint256 = mul1 / fprime + y_plus: uint256 = (yfprime + 10**18 * D) / fprime + y_minus * 10**18 / K0 + y_minus += 10**18 * S / fprime + + if y_plus < y_minus: + y = y_prev / 2 + else: + y = y_plus - y_minus + + diff: uint256 = 0 + if y > y_prev: + diff = y - y_prev + else: + diff = y_prev - y + + if diff < max(convergence_limit, y / 10**14): + return y + + raise "Did not converge" + + +@external +@pure +def newton_y(ANN: uint256, gamma: uint256, x: uint256[N_COINS], D: uint256, i: uint256) -> uint256: + + # Safety checks + assert ANN > MIN_A - 1 and ANN < MAX_A + 1 # dev: unsafe values A + assert gamma > MIN_GAMMA - 1 and gamma < MAX_GAMMA + 1 # dev: unsafe values gamma + assert D > 10**17 - 1 and D < 10**15 * 10**18 + 1 # dev: unsafe values D + + y: uint256 = self._newton_y(ANN, gamma, x, D, i) + frac: uint256 = y * 10**18 / D + assert (frac >= 10**16 - 1) and (frac < 10**20 + 1) # dev: unsafe value for y + + return y diff --git a/tests/unitary/math/test_newton_y.py b/tests/unitary/math/test_newton_y.py new file mode 100644 index 00000000..e587c3ea --- /dev/null +++ b/tests/unitary/math/test_newton_y.py @@ -0,0 +1,53 @@ +import boa +import pytest +from hypothesis import given, settings +from hypothesis import strategies as st + +N_COINS = 2 +# MAX_SAMPLES = 1000000 # Increase for fuzzing +MAX_SAMPLES = 10000 +N_CASES = 32 + +A_MUL = 10000 +MIN_A = int(N_COINS**N_COINS * A_MUL / 10) +MAX_A = int(N_COINS**N_COINS * A_MUL * 1000) + +MIN_GAMMA = 10**10 +MAX_GAMMA = 3 * 10**17 + + +@pytest.fixture(scope="module") +def math_large_gamma(): + return boa.load("contracts/mocks/newton_y_large_gamma.vy") + + +@pytest.fixture(scope="module") +def math_small_gamma(): + return boa.load("contracts/mock/newton_y_small_gamma.vy") + + +@given( + A=st.integers(min_value=MIN_A, max_value=MAX_A), + D=st.integers( + min_value=10**18, max_value=10**14 * 10**18 + ), # 1 USD to 100T USD + xD=st.integers( + min_value=10**17 // 2, max_value=10**19 // 2 + ), # <- ratio 1e18 * x/D, typically 1e18 * 1 + yD=st.integers( + min_value=10**17 // 2, max_value=10**19 // 2 + ), # <- ratio 1e18 * y/D, typically 1e18 * 1 + gamma=st.integers(min_value=MIN_GAMMA, max_value=MAX_GAMMA), + j=st.integers(min_value=0, max_value=1), +) +@settings(max_examples=MAX_SAMPLES, deadline=None) +def test_iteration_diff(math_large_gamma, A, D, xD, yD, gamma, j): + pass + # TODO: make a test that: + # - measures how many iterations it takes for the + # old value to converge between the two versions + # - makes sure that we're converging to the correct value + # - use hypothesis.note to have some clear statistics about + # the differences in divergence + # X = [D * xD // 10**18, D * yD // 10**18] + # math_large_gamma.newton_y(A, gamma, X, D, j)