-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathairfoildata.py
197 lines (152 loc) · 5.82 KB
/
airfoildata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#!/usr/bin/env python3
#%%---------------------------------------------------------------------------
# IMPORTS
#-----------------------------------------------------------------------------
import numpy as np
import random
import torch
from netw.miscfuncs import dumpToFile,fromTensor,floatTensor,makeTensor,loadFromFile
from netw.netdata import NetData
from auxfuncs import loadWingProfiles,batchAffTrf
#%%---------------------------------------------------------------------------
# Latent Vector Data
#-----------------------------------------------------------------------------
#%%
class LatentData(NetData):
def __init__(self,inp,out,batchN=1,sigN=0,sigA=0.1,sigT=0.02):
super(LatentData, self).__init__(inp,out,batchN=batchN)
# Not too many noisy samples.
assert(sigN<self.batchL)
self.setids(randP=False)
self.sigN = sigN
self.sigA = sigA
self.sigT = sigT
ns,nf = self.inputs.size()
latentZs = torch.nn.Embedding(ns,nf,device=self.inputs.device)
tensorToEmbedding(self.inputs,latentZs)
self.inputs = latentZs
def latent(self):
ns = self.batchL*self.batchN
device = self.target.device
idx = torch.tensor(np.arange(0,ns,1,dtype=np.int32),device=device)
return(self.inputs(idx))
def batch(self,i=0):
i = i % self.batchN
ids = self.ids[i]
if(self.inputs is not None):
idx = torch.tensor(ids,device=self.target.device)
xv = self.inputs(idx)
else:
xv = None
if((self.target is not None) and ((i+self.batchL)<=self.os)):
yv=self.yv
ys=self.target[ids]
yv.copy_(ys)
else:
yv = None
# Add noise to the first N samples
sigN = self.sigN
if(sigN>0):
sigA = self.sigA
sigT = self.sigT
xys = yv[0:sigN,:]
xys = batchAffTrf(xys,sigA,sigT)
yv[0:sigN,:] = xys
return xv,yv
def setids(self,randP=False):
if(randP):
self.ids=randomBatchIndices(self.batchL*self.batchN,self.batchL)
else:
bIds = np.zeros((self.batchN,self.batchL),np.int32)
fromI = 0
for i in range(self.batchN):
toI = fromI+self.batchL
bIds[i,:]=np.arange(fromI,toI,dtype=np.int32)
fromI = toI
self.ids = bIds
def save(self,fileName):
saveEmbed(fileName,self.inputs)
def restore(self,fileName):
restoreEmbed(fileName,self.inputs)
#%%---------------------------------------------------------------------------
# Airfoil Data
#-----------------------------------------------------------------------------
class WingData(LatentData):
def latentV(self,index):
idx = torch.tensor(index,device=self.target.device)
return self.inputs(idx)
def targetV(self,index):
return self.target[index]
#%%
def loadAirfoilData(zdim=20,trainP=True,batchN=100,step=None,targetA=None,sigN=0,sigA=0.1,sigT=0.02):
ys = loadWingProfiles(step=step,trainP=trainP,targetA=targetA)
ns = ys.shape[0]
xs = floatTensor((ns,zdim))
torch.nn.init.xavier_uniform_(xs)
if(batchN>1):
batchL = ns // batchN
ns = batchL * batchN
if(ns < ys.shape[0]):
xs = xs[0:ns]
ys = ys[0:ns]
return WingData(xs,ys,batchN=batchN,sigN=sigN,sigA=sigA,sigT=sigT)
#dat=loadAirfoilData(zdim=10,batchN=100,trainP=True,step=11)
#xs,ys = dat.batch(0)
#%%---------------------------------------------------------------------------
# Aux Functions
#-----------------------------------------------------------------------------
def arrayFromEmbedding(embed):
params=[]
for f in list(embed.parameters()):
f= fromTensor(f)
params=np.append(params,f)
return params
def tensorToEmbedding(params,embed):
fromI = 0
for f in list(embed.parameters()):
if(1==f.dim()):
x=f.size()
toI=fromI+x[0]
p=params[fromI:toI]
f.data[:]=p
elif(2==f.dim()):
x,y=f.size()
toI=fromI+x*y
p=params[fromI:toI]
p=p.reshape(x,y)
f.data[:,:]=p
else:
print('Error: tensorToEmbedding not implemented for layers with more than 2 dimensions')
return None
fromI=toI
def saveEmbed(fileName,embed):
params=arrayFromEmbedding(embed)
dumpToFile(fileName+'.lat',params)
def restoreEmbed(fileName,embed):
params = loadFromFile(fileName+'.lat')
params = makeTensor(params)
tensorToEmbedding(params,embed)
def randomBatchIndices(ns,batchL):
assert(0==ns%batchL)
bs = []
xs = {x for x in range(0,ns)}
while(ns > 0):
batch = np.array(random.sample(list(xs),batchL),dtype=np.int32)
bs.append(batch)
xs = xs.difference(batch)
ns -= batchL
return np.vstack(bs)
#%%---------------------------------------------------------------------------
# Test
#-----------------------------------------------------------------------------
if __name__ == "__main__":
ns = 6
zDim = 20
oDim = 3
x = np.asarray(np.random.rand(ns,zDim),dtype=np.float32)
y = np.asarray(np.random.rand(ns,oDim),dtype=np.float32)
dat = LatentData(x,y,2)
dat.setids(True)
print(dat.ids)
dat.batch(0)
dat.save('old/foo')