-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbug.py
53 lines (41 loc) · 1.42 KB
/
bug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
#!/usr/bin/env python3
#%---------------------------------------------------------------------------
# IMPORTS
#-----------------------------------------------------------------------------
import torch
from projarea import AreaProjector
from auxfuncs import currentDevice
#%%---------------------------------------------------------------------------
# Train Autodecoder Alone
#-----------------------------------------------------------------------------
#%%
n1 = 16
n2 = 32
n3 = 16
net = AreaProjector(n1=n1,n2=n2,n3=n3,nIn=8,nOut=54)
net.toGpu()
#%%
kludgeP=False
def wingLodF(net,z):
gradP = z.requires_grad
if(gradP and kludgeP):
# Kludge: If we pass a batch of only one, backward will die.
zd = z.size(0)
z2 = torch.vstack([z,torch.zeros(zd,dtype=torch.float32,device=z.device).requires_grad_(gradP)])
xy2 = net(z2)
xy1 = xy2[0:1]
else:
xy1 = net(z.contiguous().view((1,-1)))
# cd, cl = model(xy1)[0]
# obj = cd / cl
obj = torch.sum(xy1[0])
return obj
def wingLodG(net,z):
assert(z.requires_grad)
obj = wingLodF(net,z)
obj.backward()
grad = z.grad
return grad
z = torch.tensor([ 0.0149, 0.0232, -0.0196, 0.0356, 0.0021, 0.0252, 0.0184, 0.0410],requires_grad=True,device=currentDevice())
wingLodF(net,z)
wingLodG(net,z)