-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecoder.py
94 lines (67 loc) · 3.38 KB
/
decoder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
#%%
import torch
import torch.optim as optim
from netw.gradnet import GradNet
from netw.perceptron import Perceptron
from netw.miscfuncs import logf
#%%
class AutoDecoder (GradNet):
def sgd(self,dataT,lr=0.0001,momentum=0.9,wdecay=0,epochN=1000,dataV=None,fileName='/tmp/foo',schedP=False,randP=True,verbP=True):
self.train(True)
optimizerW = optim.Adam(self.parameters(),lr = lr,weight_decay=wdecay)
optimizerL = optim.Adam(dataT.inputs.parameters(),lr = lr,weight_decay=wdecay)
optimizers = [optimizerW,optimizerL]
if(schedP):
schedulerW = optim.lr_scheduler.CosineAnnealingLR(optimizerW,epochN)
schedulerL = optim.lr_scheduler.CosineAnnealingLR(optimizerL,epochN)
minLoss=self.checkpoint(dataT,dataV,fileName=fileName)
for epoch in range(epochN):
# Loop over the whole dataset with randomization and take optimization steps.
self.computeLoss(dataT,optimizers=optimizers,randP=randP)
# Loop over the whole dataset without randomization to print statistics.
if (0==((epoch+1)%100)):
minLoss = self.checkpoint(dataT,dataV,epoch=epoch,minLoss=minLoss,fileName=fileName)
if(schedP):
schedulerW.step()
schedulerL.step()
if(not(0==((epoch+1)%100))):
minLoss = self.checkpoint(dataT,dataV,epoch=epoch,minLoss=minLoss,fileName=fileName)
return minLoss
def computeLoss(self,data,optimizers=None,randP=False):
loss = 0.0
batc = 0
# Randomize the order.
if(randP):
data.setids(True)
for batc in range(data.batchN):
latentB,targetB=data.batch(batc)
outputsB = self(latentB)
lossB = self.lossFunction(outputsB,targetB)
loss += lossB
if(self.dbgP):
assert not torch.isnan(outputsB).any(), "computeLoss: output contains nan"
assert not torch.isnan(targetB).any(), "computeLoss: target contains nan"
if(optimizers is not None):
for optimizer in optimizers:
optimizer.zero_grad()
lossB.backward()
for optimizer in optimizers:
optimizer.step()
loss = loss/data.batchN
return(loss)
class PerceptronDecoder(AutoDecoder,Perceptron):
def checkpoint(self,dataT,dataV,epoch=-1,minLoss=None,fileName=None):
with torch.no_grad():
if(dataV is None):
currentLoss = self.computeLoss(dataT,optimizers=None,randP=False)
else:
currentLoss = self.computeLoss(dataV,optimizers=None,randP=False)
if(minLoss is None):
minLoss = currentLoss
logf.info('[%4d] current loss: %.3e min loss: %.3e',epoch+1,currentLoss,minLoss)
if(currentLoss<minLoss):
minLoss=currentLoss
if(fileName is not None):
self.save(fileName,epoch+1,minLoss)
dataT.save(fileName)
return minLoss