-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathobjective.py
127 lines (92 loc) · 3.55 KB
/
objective.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
#!/usr/bin/env python3
#%%---------------------------------------------------------------------------
# IMPORTS
#-----------------------------------------------------------------------------
import torch
from netw.miscfuncs import currentDevice
from auxfuncs import shoelaceArea1
from lod.MLP import MLP
from lod.GraphSage import GraphSAGE
#%%---------------------------------------------------------------------------
# STIFFNSSS
#-----------------------------------------------------------------------------
def stiffMat (n,allP=False):
K = torch.zeros((n,n),dtype=torch.float32)
ws = torch.tensor([1,-4,6,-4,1],dtype=torch.float32)
if(allP):
K[0,0:3] = ws[2:]
K[0,-2:] = ws[0:2]
K[1,0:4] = ws[1:]
K[1,-1] = ws[0]
for i in range(2,n-2):
if(allP or (i < (n//2 - 1)) or (i >= (n//2 + 1))):
K[i,i-2:i+3]=ws
if(allP):
K[-1,-3:] = ws[0:3]
K[-1,0:2] = ws[3:]
K[-2,-4:] = ws[0:4]
K[-2,0] = ws[4]
return K
def stiffnessF(K,xy1):
if((2==len(xy1.size())) and (2==xy1.size(1))):
xy2 = xy1
else:
xy2 = xy1[0].view((-1,2))
xs = xy2[:,0]
ys = xy2[:,1]
return 0.5 * (xs.T @ K @ xs + ys.T @ K @ ys)
if __name__ == "__main__":
K = stiffMat (27)
print(K)
#%%----------------------------------------------------------------------------
# Lift Over Drag
#%%----------------------------------------------------------------------------
def loadSurogateModel(lodP=False,modelType='mlp'):
device=currentDevice()
model = MLP(predict_lod=lodP).to(device) if modelType == 'mlp' else GraphSAGE(lodP).to(device)
if(modelType == 'mlp'):
if(lodP):
model.load_state_dict(torch.load('lod/mlp_state_dict_lod.pth',map_location=device))
else:
model.load_state_dict(torch.load('lod/mlp_state_dict_cdl.pth',map_location=device))
else:
if(lodP):
model.load_state_dict(torch.load('lod/gnn_state_dict_lod.pth',map_location=device))
else:
model.load_state_dict(torch.load('lod/gnn_state_dict_cdl.pth',map_location=device))
return model
kludgeP=True
def wingLodF(net,z,model=None,K=None,targetA=None,z0=None,lambF=0.1,lambA=1.0):
if(model is None):
model = loadSurogateModel()
gradP = z.requires_grad
if(gradP and kludgeP):
# Kludge: If we pass a batch of only one, backward will die.
zd = z.size(0)
z2 = torch.vstack([z,torch.zeros(zd,dtype=torch.float32,device=z.device).requires_grad_(gradP)])
xy2 = net(z2)
xy1 = xy2[0:1]
else:
xy1 = net(z.contiguous().view((1,-1)))
cd, cl = model(xy1)[0]
obj = cd / cl
if(targetA is not None and lambA > 0.0):
da = shoelaceArea1(xy1)-targetA
obj = obj + lambA * da * da
if(z0 is not None and lambF > 0.0):
#z0 = z0.view((1,-1))
lossL1 = torch.nn.L1Loss()
obj = obj + lambF*lossL1(z, z0)
if(K is not None):
obj = obj + stiffnessF(K,xy1)
return obj
def wingLodG(net,z,model=None,K=None,z0=None,lambF=0.1):
assert(z.requires_grad)
obj = wingLodF(net,z,model=model,K=K,z0=z0,lambF=0.1)
obj.backward()
grad = z.grad
return grad
def predictDraglift(net,model,z):
xy = net(z.view((1,-1)))
cd, cl = model(xy)[0]
return cd,cl,xy[0]