-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathevaluate.py
executable file
·181 lines (161 loc) · 6.45 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
import json
import cv2
import numpy as np
import matplotlib.pyplot as plt
import random
from utils import (
remap_pose,
get_single_bop_annotation,
load_bop_meshes,
load_bbox_3d,
compute_pose_diff,
)
from poses import PoseAnnot
def evaluate(cfg, predictions):
INF = 100000000
classNum = cfg['DATASETS']['N_CLASS'] - 1 # get rid of the background class
thresholds_adi = [0.05, 0.10, 0.20, 0.50]
thresholds_rep = [2, 5, 10, 20]
accuracy_adi_per_class = []
accuracy_rep_per_class = []
#
depth_bins = 3
accuracy_adi_per_depth = []
accuracy_rep_per_depth = []
meshes, _ = load_bop_meshes(cfg['DATASETS']['MESH_DIR'])
meshDiameter = cfg['DATASETS']['MESH_DIAMETERS']
surfacePts = []
for ms in meshes:
pts = np.array(ms.vertices)
tmp_index = np.random.choice(len(pts), 1000, replace=True)
pts = pts[tmp_index]
surfacePts.append(pts)
keypoints_3d = load_bbox_3d(cfg['DATASETS']['BBOX_FILE'])
predictions_for_eval = remap_predictions(
np.array(cfg['INPUT']['INTERNAL_K']).reshape(3,3),
cfg['INPUT']['INTERNAL_WIDTH'],
cfg['INPUT']['INTERNAL_HEIGHT'],
keypoints_3d,
predictions
)
# get depth range from annotations, and divide it to serval bins
depth_min = INF
depth_max = 0
for filename, item in predictions_for_eval.items():
gt = item['gt']
for clsid, R, T in gt:
depth = float(T[2])
depth_min = min(depth_min, depth)
depth_max = max(depth_max, depth)
depth_max += 1e-5 # add some margin for safe depth index computation
depth_bin_width = (depth_max - depth_min) / depth_bins
errors_adi_per_depth = list([] for i in range(0, depth_bins))
errors_rep_per_depth = list([] for i in range(0, depth_bins))
for clsid in range(classNum):
errors_adi_all = [] # 3D errors
errors_rep_all = [] # 2D errors
depth_all = [] # depth for each sample
#
for filename, item in predictions_for_eval.items():
K = item['K']
pred = item['pred']
gt = item['gt']
# filter by class id
pred = [p for p in pred if p[1] == clsid]
gt = [g for g in gt if g[0] == clsid]
if len(gt) == 0:
continue
# find predictions with best confidences
assert(len(gt) == 1) # only one object for one class now
# get the depth bin of the object
depth = float(gt[0][2][2])
depth_idx = int((depth - depth_min) / depth_bin_width)
depth_all.append(depth)
#
if len(pred) > 0:
# find the best confident one
bestIdx = 0
R1 = gt[0][1]
T1 = gt[0][2]
R2 = pred[bestIdx][2]
T2 = pred[bestIdx][3]
err_3d, err_2d = compute_pose_diff(surfacePts[clsid], K, R1, T1, R2, T2)
#
errors_adi_all.append(err_3d / meshDiameter[clsid])
errors_rep_all.append(err_2d)
errors_adi_per_depth[depth_idx].append(err_3d / meshDiameter[clsid])
errors_rep_per_depth[depth_idx].append(err_2d)
else:
errors_adi_all.append(1.0)
errors_rep_all.append(50)
errors_adi_per_depth[depth_idx].append(1.0)
errors_rep_per_depth[depth_idx].append(50)
assert(len(errors_adi_all) == len(errors_rep_all))
counts_all = len(errors_adi_all)
if counts_all > 0:
accuracy = {}
for th in thresholds_adi:
validCnt = (np.array(errors_adi_all) < th).sum()
key = 'ADI' + ("%.2fd" % th).lstrip('0')
accuracy[key] = (validCnt / counts_all) * 100
accuracy_adi_per_class.append(accuracy)
accuracy = {}
for th in thresholds_rep:
validCnt = (np.array(errors_rep_all) < th).sum()
accuracy[('REP%02dpx'%th)] = (validCnt / counts_all) * 100
accuracy_rep_per_class.append(accuracy)
else:
accuracy_adi_per_class.append({})
accuracy_rep_per_class.append({})
#
# compute accuracy for every depth bin
for i in range(depth_bins):
assert(len(errors_adi_per_depth[i]) == len(errors_rep_per_depth[i]))
counts_all = len(errors_adi_per_depth[i])
if counts_all > 0:
accuracy = {}
for th in thresholds_adi:
validCnt = (np.array(errors_adi_per_depth[i]) < th).sum()
key = 'ADI' + ("%.2fd" % th).lstrip('0')
accuracy[key] = (validCnt / counts_all) * 100
accuracy_adi_per_depth.append(accuracy)
accuracy = {}
for th in thresholds_rep:
validCnt = (np.array(errors_rep_per_depth[i]) < th).sum()
accuracy[('REP%02dpx'%th)] = (validCnt / counts_all) * 100
accuracy_rep_per_depth.append(accuracy)
else:
accuracy_adi_per_depth.append({})
accuracy_rep_per_depth.append({})
#
return accuracy_adi_per_class, accuracy_rep_per_class, accuracy_adi_per_depth, accuracy_rep_per_depth, [depth_min, depth_max]
def remap_predictions(internal_K, internal_width, internal_height, keypoints_3d, predictions):
new_results = {}
for imagename in predictions:
# print(imagename)
meta = predictions[imagename]['meta']
pred = predictions[imagename]['pred']
K = meta['K']
width = meta['width']
height = meta['height']
class_ids = meta['class_ids']
rotations = meta['rotations']
translations = meta['translations']
result = []
for score, clsid, R, T in pred:
pt3d = np.array(keypoints_3d[clsid])
transM = np.array(
[[width/internal_width, 0, 0],
[0, height/internal_height, 0],
[0, 0, 1]], dtype=np.float32)
newR, newT, remap_err = remap_pose(internal_K, R, T, pt3d, K, transM)
result.append([score, clsid, newR, newT, remap_err])
# rearrange ground truth
gt = []
for i in range(len(class_ids)):
clsid = class_ids[i]
R = rotations[i]
T = translations[i]
gt.append([clsid, R, T])
new_results.update({imagename:{'K':K, 'pred':result, 'gt':gt}})
return new_results