forked from kentavv/binary_viewer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
hilbert.cpp
124 lines (98 loc) · 3.46 KB
/
hilbert.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
/*
* Copyright (c) 2015, 2017, 2020 Kent A. Vander Velden, kent.vandervelden@gmail.com
*
* This file is part of BinVis.
*
* BinVis is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* BinVis is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with BinVis. If not, see <https://www.gnu.org/licenses/>.
*/
// The gilbert2d method is based on Python code from https://github.com/jakubcerveny/gilbert/blob/master/gilbert2d.py
#include <vector>
#include <cstdlib>
using std::vector;
using std::pair;
using std::make_pair;
#include "hilbert.h"
template<class T>
T sgn(const T &x) { return (x > 0) - (x < 0); }
template<class T>
pair<T, T> sgn(const pair<T, T> &pt) { return make_pair(sgn(pt.first), sgn(pt.second)); }
template<class T>
pair<T, T> operator+(const pair<T, T> &a, const pair<T, T> &b) { return make_pair(a.first + b.first, a.second + b.second); }
template<class T>
pair<T, T> operator+=(pair<T, T> &a, const pair<T, T> &b) {
a.first += b.first;
a.second += b.second;
return a;
}
template<class T>
pair<T, T> operator-(const pair<T, T> &a, const pair<T, T> &b) { return make_pair(a.first - b.first, a.second - b.second); }
template<class T>
pair<T, T> operator-(const pair<T, T> &a) { return make_pair(-a.first, -a.second); }
template<class T>
pair<T, T> operator/(const pair<T, T> &a, const T &b) { return make_pair(a.first / b, a.second / b); }
static void gilbert2d(pt_t pt, pt_t a, pt_t b, curve_t &curve) {
// """
// Generalized Hilbert ('gilbert') space-filling curve for arbitrary-sized
// 2D rectangular grids.
// """
int w = abs(a.first + a.second);
int h = abs(b.first + b.second);
pt_t da = sgn(a); // unit major direction
pt_t db = sgn(b); // unit orthogonal direction
if (h == 1) {
// trivial row fill
for (int i = 0; i < w; i++) {
curve.emplace_back(pt);
pt += da;
}
return;
}
if (w == 1) {
// trivial column fill
for (int i = 0; i < h; i++) {
curve.emplace_back(pt);
pt += db;
}
return;
}
pt_t a2 = a / 2;
pt_t b2 = b / 2;
int w2 = abs(a2.first + a2.second);
int h2 = abs(b2.first + b2.second);
if (2 * w > 3 * h) {
if ((w2 % 2) && (w > 2)) {
// prefer even steps
a2 += da;
}
// long case: split in two parts only
gilbert2d(pt, a2, b, curve);
gilbert2d(pt + a2, a - a2, b, curve);
} else {
if ((h2 % 2) && (h > 2)) {
// prefer even steps
b2 += db;
}
// standard case: one step up, one long horizontal, one step down
gilbert2d(pt, b2, a2, curve);
gilbert2d(pt + b2, a, b - b2, curve);
gilbert2d(pt + (a - da) + (b2 - db),
-b2, -(a - a2), curve);
}
}
void gilbert2d(int width, int height, curve_t &curve) {
curve.clear();
pt_t pt{0, 0}, a{width, 0}, b{0, height};
if (width < height) std::swap(a, b);
gilbert2d(pt, a, b, curve);
}