-
Notifications
You must be signed in to change notification settings - Fork 32
/
gather_quantitative.py
30 lines (26 loc) · 1.12 KB
/
gather_quantitative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
import numpy as np
fin = open("result_100000.txt",'r')
lines = fin.readlines()
fin.close()
numbers = [float(i.strip()) for i in lines[0].split()]
normal_numbers_gt2pred = [float(i.split()[0]) for i in lines[1:]]
normal_numbers_pred2gt = [float(i.split()[1]) for i in lines[1:]]
assert len(numbers)==21
assert len(normal_numbers_gt2pred)==90
assert len(normal_numbers_pred2gt)==90
fin = open("result_counts.txt",'r')
lines = fin.readlines()
fin.close()
V = int(round(float(lines[-1].split()[0])))
T = int(round(float(lines[-1].split()[1])))
fin = open("result_tri_angle.txt",'r')
lines = fin.readlines()
fin.close()
anumbers = [float(i) for i in lines]
assert len(anumbers)==180
print( "& %.3f & %.3f & %.3f & %.3f & %.3f & %d & %d & & %.2f & %.2f & %.2f & %.2f & %.2f & %.2f & %.2f & %.2f & %.2f \\\\" %
(numbers[5]*100000, numbers[11], numbers[8], numbers[17]*100, numbers[20], V, T,
normal_numbers_gt2pred[80]*100, normal_numbers_gt2pred[30]*100, normal_numbers_gt2pred[5]*100,
normal_numbers_pred2gt[80]*100, normal_numbers_pred2gt[30]*100, normal_numbers_pred2gt[5]*100,
anumbers[10-1]*100, anumbers[20-1]*100, anumbers[30-1]*100,
) )