-
Notifications
You must be signed in to change notification settings - Fork 10
/
Intro-to-GLMs.qmd
executable file
·230 lines (167 loc) · 4.95 KB
/
Intro-to-GLMs.qmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Introduction
---
{{< include shared-config.qmd >}}
## Introduction to Epi 204 {.scrollable}
Welcome to Epidemiology 204: Quantitative Epidemiology III (Statistical Models).
In this course, we will start where Epi 203 left off: with linear regression models.
::: callout-note
Epi 203/STA 130B/STA 131B is a prerequisite for this course.
If you haven't passed one of these courses, please talk to me ASAP.
:::
### What you should already know {.scrollable}
{{< include prereq-knowledge.qmd >}}
### What we will cover in this course
* Linear (Gaussian) regression models (review and more details)
* Regression models for non-Gaussian outcomes
+ binary
+ count
+ time to event
* Statistical analysis using R
## Regression models
Why do we need them?
* continuous predictors
* not enough data to analyze some subgroups individually
### Example: Adelie penguins
```{r}
#| label: fig-palmer-1
#| fig-cap: Palmer penguins
#| echo: false
library(ggplot2)
library(plotly)
library(dplyr)
ggpenguins <-
palmerpenguins::penguins |>
dplyr::filter(species == "Adelie") |>
ggplot(
aes(x = bill_length_mm , y = body_mass_g)) +
geom_point() +
xlab("Bill length (mm)") +
ylab("Body mass (g)")
print(ggpenguins)
```
### Linear regression
```{r}
#| label: fig-palmer-2
#| fig-cap: Palmer penguins with linear regression fit
ggpenguins2 =
ggpenguins +
stat_smooth(method = "lm",
formula = y ~ x,
geom = "smooth")
ggpenguins2 |> print()
```
### Curved regression lines
```{r}
#| label: fig-palmer-3
#| fig-cap: Palmer penguins - curved regression lines
ggpenguins2 = ggpenguins +
stat_smooth(
method = "lm",
formula = y ~ log(x),
geom = "smooth") +
xlab("Bill length (mm)") +
ylab("Body mass (g)")
ggpenguins2
```
### Multiple regression
```{r}
#| label: fig-palmer-4
#| fig-cap: "Palmer penguins - multiple groups"
ggpenguins =
palmerpenguins::penguins |>
ggplot(
aes(x = bill_length_mm ,
y = body_mass_g,
color = species
)
) +
geom_point() +
stat_smooth(
method = "lm",
formula = y ~ x,
geom = "smooth") +
xlab("Bill length (mm)") +
ylab("Body mass (g)")
ggpenguins |> print()
```
### Modeling non-Gaussian outcomes
```{r}
#| label: fig-beetles_1a
#| fig-cap: "Mortality rates of adult flour beetles after five hours' exposure to gaseous carbon disulphide (Bliss 1935)"
library(glmx)
data(BeetleMortality)
beetles = BeetleMortality |>
mutate(
pct = died/n,
survived = n - died
)
plot1 =
beetles |>
ggplot(aes(x = dose, y = pct)) +
geom_point(aes(size = n)) +
xlab("Dose (log mg/L)") +
ylab("Mortality rate (%)") +
scale_y_continuous(labels = scales::percent) +
# xlab(bquote(log[10]), bquote(CS[2])) +
scale_size(range = c(1,2))
print(plot1)
```
### Why don't we use linear regression?
```{r}
#| label: fig-beetles-plot1
#| fig-cap: "Mortality rates of adult flour beetles after five hours' exposure to gaseous carbon disulphide (Bliss 1935)"
beetles_long =
beetles |>
reframe(.by = everything(),
outcome = c(
rep(1, times = died),
rep(0, times = survived))
)
lm1 =
beetles_long |>
lm(
formula = outcome ~ dose,
data = _)
range1 = range(beetles$dose) + c(-.2, .2)
f.linear = function(x) predict(lm1, newdata = data.frame(dose = x))
plot2 =
plot1 +
geom_function(fun = f.linear, aes(col = "Straight line")) +
labs(colour="Model", size = "")
print(plot2)
```
### Zoom out
```{r}
#| label: fig-beetles2
#| fig-cap: Mortality rates of adult flour beetles after five hours' exposure to gaseous carbon disulphide (Bliss 1935)
#| echo: false
print(plot2 + expand_limits(x = c(1.6, 2)))
```
### log transformation of dose?
```{r}
#| label: fig-beetles3
#| fig-cap: Mortality rates of adult flour beetles after five hours' exposure to gaseous carbon disulphide (Bliss 1935)
lm2 =
beetles_long |>
lm(formula = outcome ~ log(dose), data = _)
f.linearlog = function(x) predict(lm2, newdata = data.frame(dose = x))
plot3 = plot2 +
expand_limits(x = c(1.6, 2)) +
geom_function(fun = f.linearlog, aes(col = "Log-transform dose"))
print(plot3 + expand_limits(x = c(1.6, 2)))
```
### Logistic regression
```{r}
#| label: fig-beetles4b
#| fig-cap: Mortality rates of adult flour beetles after five hours' exposure to gaseous carbon disulphide (Bliss 1935)
glm1 = beetles |>
glm(formula = cbind(died, survived) ~ dose, family = "binomial")
f = function(x) predict(glm1, newdata = data.frame(dose = x), type = "response")
plot4 = plot3 + geom_function(fun = f, aes(col = "Logistic regression"))
print(plot4)
```
### Three parts to regression models
- What distribution does the outcome have for a specific sub-population defined by covariates? (**outcome model**)
- How does the combination of covariates relate to the mean? (**link function**)
- How do the covariates combine? (**linear predictor/linear component**)
$$\eta \eqdef \vx \' \vb = \b_0 + \b_1 x_1 + \b_2 x_2 + ...$$