forked from sciaba/nanocc
-
Notifications
You must be signed in to change notification settings - Fork 0
/
make_templates.py
447 lines (406 loc) · 18.1 KB
/
make_templates.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
import os
import sys
import collections
import warnings
with warnings.catch_warnings():
warnings.simplefilter("ignore")
import uproot3
import re
import json
from coffea import hist
from coffea.util import load, save
import matplotlib.pyplot as plt
import mplhep as hep
from histoprint import print_hist
from runner import show_hists
def print1d(h1d, title=""):
# try:
vals = h1d.project('msd').values()[()]
edges = h1d.project('msd').axis("msd").edges()
print_hist((vals, edges), title=title,
columns=100,
)
# except:
# print("Couldn't plot", h1d)
# bg_colors="rgbcmy")
lumi = {
2016 : 35.5,
2017 : 41.5,
2018 : 59.2,
}
lumi_mu = {
2016 : 35.2,
2017 : 41.1,
2018 : 59.0,
}
def xSecReader(fname):
# Probably unsafe
with open(fname) as file:
lines = file.readlines()
lines = [l.strip("\n") for l in lines if not l.startswith("#")]
lines = [l.split("#")[0] for l in lines if len(l) > 5]
_dict = {}
for line in lines:
key = line.split()[0]
valuex = line.split()[1:]
if len(valuex) > 1:
value = "".join(valuex)
else:
value = valuex[0]
_dict[key] = float(eval(value))
return _dict
def rescale(accumulator, xsecs):
"""Scale by lumi"""
lumi = 1000
from coffea import hist
scale = {}
print("Scaling:")
for dataset, dataset_sumw in collections.OrderedDict(sorted(accumulator['sumw'].items())).items():
dataset_key = dataset.lstrip("/").split("/")[0]
if dataset_key in xsecs:
print(" ", dataset_key)
scale[dataset] = lumi*xsecs[dataset_key]/dataset_sumw
else:
print(" ", "X ", dataset_key)
scale[dataset] = 0 #lumi / dataset_sumw
for h in accumulator.values():
if isinstance(h, hist.Hist):
h.scale(scale, axis="dataset")
return accumulator
def collate(hist_obj, mergemap=None, info=True):
"""Merge datsets"""
name_map = {
'JetHT': 'data_obs',
'SingleMuon': 'data_obs',
'QCD': "qcd",
'ZJetsToQQ': "zqq",
'WJetsToQQ': "wqq",
'GluGluHToBB': 'hbb',
'GluGluHToCC': 'hcc',
'TTToHadronic': 'tqq',
'TTToSemiLeptonic': 'tqq',
'TTToSemileptonic': 'tqq', #
'TTTo2L2Nu': 'tqq',
'ST': 'stqq',
'WW': 'vvqq',
'WZ': 'vvqq',
'ZZ': 'vvqq',
'WJetsToLNu': 'wln',
'DYJetsToLL': 'zll',
'VBFHToCC_M-125_13TeV_powheg_pythia8_weightfix': 'vbfhcc',
'WminusH_HToCC_WToLNu_M125_13TeV_powheg_pythia8': 'whcc',
'WminusH_HToCC_WToQQ_M125_13TeV_powheg_pythia8': 'whcc',
'WplusH_HToCC_WToLNu_M125_13TeV_powheg_pythia8': 'whcc',
'WplusH_HToCC_WToQQ_M125_13TeV_powheg_pythia8': 'whcc',
'ZH_HToCC_ZToLL_M125_13TeV_powheg_pythia8': 'zhcc',
'ZH_HToCC_ZToNuNu_M125_13TeV_powheg_pythia8': 'zhcc',
'ZH_HToCC_ZToQQ_M125_13TeV_powheg_pythia8': 'zhcc',
'ggZH_HToCC_ZToLL_M125_13TeV_powheg_pythia8': 'zhcc',
'ggZH_HToCC_ZToNuNu_M125_13TeV_powheg_pythia8': 'zhcc',
'ggZH_HToCC_ZToQQ_M125_13TeV_powheg_pythia8': 'zhcc',
}
import json
sample_keys = [id.name for id in hist_obj.axis('dataset').identifiers()]
if mergemap is None:
# Sort and group samples
from collections import OrderedDict
import string
# Get short datset names and create a 1:1 mapping
short = [k.lstrip('/').split("/")[0].split("_")[0].lstrip('/') for k in sample_keys]
# Because shit had different names
for i in range(len(short)):
if short[i] in name_map.keys():
short[i] = name_map[short[i]]
mapper = dict(zip(sample_keys, short))
# Sort keys and map shortname:list_of_sets
alphabet = "QTZWG" + string.ascii_uppercase + string.ascii_lowercase
groups = list(set(mapper.values()))
map_dict = OrderedDict()
for group in groups:
map_dict[group] = [k for k, v in mapper.items() if v == group]
outjson = f'mergemap_{args.identifier}.json'
with open(outjson, 'w') as fout:
json_dumps_str = json.dumps(map_dict, indent=4)
print(json_dumps_str, file=fout)
else:
map_dict = mergemap
if info:
print("Merging datasets")
for key, vals in map_dict.items():
print(" "+key)
for val in vals:
print(" "+val)
if mergemap is None:
print(f"Writing merge map to {outjson}")
# Group
_cat = hist.Cat("process", "Process", sorting='placement')
hist_obj = hist_obj.group('dataset', _cat, map_dict)
return hist_obj
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
parser.add_argument('--id', '--identifier', dest='identifier', default=r'', help='File identifier to carry through (default: %(default)s)')
parser.add_argument("--year", default=2017, type=int, required=True, help="Scale by appropriate lumi")
parser.add_argument("-m", "--merge", "--mergemap", dest='mergemap', default=None, type=str, help="Load a mergemap json")
parser.add_argument("--split", type=str2bool, default='True', choices={True, False}, help='Split W/Z by flavour')
parser.add_argument("--muon", type=str2bool, default='True', choices={True, False}, help='Process muon templates')
parser.add_argument("--systs", type=str2bool, default='False', choices={True, False}, help='Process systematics')
parser.add_argument("--type", default='cc', choices=['cc', 'bb', '3'], type=str, help="B templates or C tempaltes")
parser.add_argument("--region", default='signal', choices=['signal', 'signal_noddt'], type=str, help="Which region in templates")
parser.add_argument('--pn', '--particleNet', dest='particleNet', action='store_true', help='Use ParticleNet')
args = parser.parse_args()
print("Running with the following options:")
print(args)
# Bookkeeping
if args.type == 'cc':
file_kind = 'CC'
elif args.type == '3':
file_kind = "3"
else:
file_kind = "BB"
template_file = f"templates_{args.identifier}_{file_kind}.root"
template_mu_file = f"templatesmuCR_{args.identifier}_{file_kind}.root"
if os.path.exists(template_file):
os.remove(template_file)
if os.path.exists(template_mu_file):
os.remove(template_mu_file)
print(f'Will save templates to {template_file}')
fout = uproot3.create(template_file)
# Load info
print(f'Processing coffea output from hists_{args.identifier}.coffea')
output = load(f'hists_{args.identifier}.coffea')
#xsecs = xSecReader('metadata/xSections.dat')
xsecs = xSecReader('metadata/xSections_manual.dat')
# Scale by xsecs
output = rescale(output, xsecs)
#########
# Load mergemap
if args.mergemap is not None:
with open(args.mergemap) as json_file:
merge_map = json.load(json_file)
else:
merge_map = None
# Do Signal region
h = collate(output['templates'], merge_map).integrate('region', args.region)
# Scale MC by lumi
_nodata = re.compile("(?!data_obs)")
h.scale({p: lumi[args.year] for p in h[_nodata].identifiers('process')}, axis="process")
# Saved scaled hists for debugging
import copy
chists = copy.deepcopy(output)
for key, val in chists.items():
if isinstance(val, hist.Hist):
args.mergemap
val = collate(val, merge_map, info=False)
val.scale({p: lumi[args.year] for p in val[_nodata].identifiers('process')}, axis="process")
chists[key] = val
debug_save_name = f'scaled_hists_{args.identifier}.coffea'
print(f'Saving scaled hists/outputs to {debug_save_name}')
save(chists, f'{debug_save_name}')
proc_names = h.axis('process').identifiers()
from coffea.hist import StringBin
_extra_procs = {_s: StringBin(_s) for _s in ['wcq', 'zbb', 'zcc']}
if args.split: proc_names += list(_extra_procs.values())
if args.particleNet:
CvLcut = 0.84
CvBcut = 0.11
else:
BvLcut = 0.7
CvLcut = 0.45
CvBcut = 0.03
for proc in proc_names:
print(proc)
for i, ptbin in enumerate(h.identifiers('pt')):
for syst in h.identifiers('systematic'):
if syst.name != "nominal" and proc.name == 'data_obs': continue
# if "LHEScale" in syst.name and ("hbb" not in proc.name or "hcc" not in proc.name): continue
source_proc = proc
if args.split:
if proc.name in ['zbb', 'hbb']:
mproj = (3,)
elif proc.name == 'wcq' or proc.name in ['zcc', 'hcc']:
mproj = (2,)
elif proc.name == 'wqq' or proc.name == 'zqq':
mproj = (1,)
else:
mproj = (slice(None), 'all')
if proc.name in ['wcq', 'wqq']: source_proc = 'wqq'
if proc.name in ['zbb', 'zcc', 'zqq']: source_proc = 'zqq'
else:
mproj = (slice(None), 'all')
systreal = syst
if args.type == '3':
pqq_template = (h.integrate('process', source_proc)
.integrate('genflavor', *mproj)
.integrate('systematic', systreal)
.integrate('pt', ptbin)
.integrate('ddb', overflow='all')
)
pcc_template = (h.integrate('process', source_proc)
.integrate('genflavor', *mproj)
.integrate('systematic', systreal)
.integrate('pt', ptbin)
.integrate('ddb', overflow='all')
)
pbb_template = (h.integrate('process', source_proc)
.integrate('genflavor', *mproj)
.integrate('systematic', systreal)
.integrate('pt', ptbin)
.integrate('ddb', overflow='all')
)
elif args.type == 'cc':
fail_template = (h.integrate('process', source_proc)
.integrate('genflavor', *mproj)
.integrate('systematic', systreal)
.integrate('pt', ptbin)
.integrate('ddb')
.integrate('ddcvb', slice(CvBcut, None))
.integrate('ddc', slice(None, CvLcut))
)
pass_template = (h.integrate('process', source_proc)
.integrate('genflavor', *mproj)
.integrate('systematic', systreal)
.integrate('pt', ptbin)
.integrate('ddb')
.integrate('ddcvb', slice(CvBcut, None))
.integrate('ddc', slice(CvLcut, None))
)
elif args.type == 'bb':
# print(h.axis('ddb').identifiers())
# exit()
fail_template = (h.integrate('process', source_proc)
.integrate('genflavor', *mproj)
.integrate('systematic', systreal)
.integrate('pt', ptbin)
.integrate('ddc')
.integrate('ddcvb')
.integrate('ddb', slice(None, BvLcut))
)
pass_template = (h.integrate('process', source_proc)
.integrate('genflavor', *mproj)
.integrate('systematic', systreal)
.integrate('pt', ptbin)
.integrate('ddc')
.integrate('ddcvb')
.integrate('ddb', slice(BvLcut, None))
)
else:
raise UserWarning("Unknown template type.")
try:
content = fail_template.sum('msd').values()
except:
content = pqq_template.sum('msd').values()
if content == {} or content[()] == 0.:
if proc == "data_obs" and syst != "nominal":
pass
else:
print("Missing", proc, ptbin, syst)
continue
sname = "_%s" % syst if syst.name != '' else ''
if args.type == '3':
name = "%s_pqq%s_bin%d" % (proc, sname, i)
fout[name] = hist.export1d(pqq_template)
name = "%s_pcc%s_bin%d" % (proc, sname, i)
fout[name] = hist.export1d(pcc_template)
name = "%s_pbb%s_bin%d" % (proc, sname, i)
fout[name] = hist.export1d(pbb_template)
else:
name = "%s_pass%s_bin%d" % (proc, sname, i)
fout[name] = hist.export1d(pass_template)
name = "%s_fail%s_bin%d" % (proc, sname, i)
fout[name] = hist.export1d(fail_template)
fout.close()
if not args.muon:
sys.exit()
## Muon CR
print("Muon CR")
print(f'Will save templates to {template_mu_file}')
foutmu = uproot3.create(template_mu_file)
h = collate(output['templates'], merge_map).integrate('region', 'muoncontrol')
# Scale MC by lumi
_nodata = re.compile("(?!data_obs)")
h.scale({p: lumi_mu[args.year] for p in h[_nodata].identifiers('process')}, axis="process")
rename = {
'trigweight': 'trigger',
'pileupweight': 'Pu',
'mutrigweight': 'mutrigger',
'muidweight': 'muid',
'muisoweight': 'muiso',
'matchedUp': 'matched',
'matchedDown': 'unmatched',
}
for proc in h.identifiers('process'):
for syst in h.identifiers('systematic'):
if syst.name != "nominal" and proc == 'data_obs': continue
source_proc = proc
if args.split:
if proc.name in ['zbb', 'hbb']:
mproj = (3,)
elif proc.name == 'wcq' or proc.name in ['zcc', 'hcc']:
mproj = (2,)
elif proc.name == 'wqq' or proc.name == 'zqq':
mproj = (1,)
else:
mproj = (slice(None), 'all')
if proc.name in ['wcq', 'wqq']: source_proc = 'wqq'
if proc.name in ['zbb', 'zcc', 'zqq']: source_proc = 'zqq'
else:
mproj = (slice(None), 'all')
systreal = syst
if args.type == 'cc':
fail_template = (h.integrate('process', source_proc)
.integrate('genflavor', *mproj)
.integrate('systematic', systreal)
.integrate('pt')
.integrate('ddb')
.integrate('ddcvb', slice(CvBcut, None))
.integrate('ddc', slice(None, CvLcut))
)
pass_template = (h.integrate('process', source_proc)
.integrate('genflavor', *mproj)
.integrate('systematic', systreal)
.integrate('pt')
.integrate('ddb')
.integrate('ddcvb', slice(CvBcut, None))
.integrate('ddc', slice(CvLcut, None))
)
elif args.type == 'bb':
fail_template = (h.integrate('process', source_proc)
.integrate('genflavor', *mproj)
.integrate('systematic', systreal)
.integrate('pt')
.integrate('ddb', slice(None, BvLcut))
.integrate('ddcvb')
.integrate('ddc')
)
pass_template = (h.integrate('process', source_proc)
.integrate('genflavor', *mproj)
.integrate('systematic', systreal)
.integrate('pt')
.integrate('ddb', slice(BvLcut, None))
.integrate('ddcvb')
.integrate('ddc')
)
else:
raise NotImplementedError
content = fail_template.sum('msd').values()
if content == {} or content[()] == 0.:
print(proc, syst)
continue
sname = "_%s" % syst if syst != '' else ''
for k,v in rename.items():
sname = sname.replace(k, v)
name = "%s_pass%s" % (proc, sname)
foutmu[name] = hist.export1d(pass_template)
name = "%s_fail%s" % (proc, sname)
foutmu[name] = hist.export1d(fail_template)
foutmu.close()