-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrad_cam.py
61 lines (47 loc) · 2.36 KB
/
grad_cam.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from numpy import linalg as LA
import numpy as np
import ipdb
def process_gradients(grad_norms):
# num_words * 4gate_sizes * hidden_dim
num_words = len(grad_norms)
xp = np.linspace(0,99,num_words)
fp = [g.item() for g in grad_norms]
x = list(range(100))
interp_grads = np.interp(x, xp, fp)
return interp_grads
def compute_norm(grads):
return LA.norm(grads)
def gates_compute(model, args, gates_f):
ih_gate = model.rnn.forward_cell.weight_ih.tolist()
ih_bias = model.rnn.forward_cell.bias_ih.tolist()
hh_gate = model.rnn.forward_cell.weight_hh.tolist()
hh_bias = model.rnn.forward_cell.bias_hh.tolist()
ii, if_, ig, io = compute_norm(ih_bias[:HIDDEN_DIM]), compute_norm(ih_bias[HIDDEN_DIM:2*HIDDEN_DIM]), compute_norm(ih_bias[2*HIDDEN_DIM:3*HIDDEN_DIM]), compute_norm(ih_bias[3*HIDDEN_DIM:])
hi, hf_, hg, ho = compute_norm(hh_bias[:HIDDEN_DIM]), compute_norm(hh_bias[HIDDEN_DIM:2*HIDDEN_DIM]), compute_norm(hh_bias[2*HIDDEN_DIM:3*HIDDEN_DIM]), compute_norm(hh_bias[3*HIDDEN_DIM:])
inorm, fnorm, gnorm, onorm = compute_norm([ii, hi]), compute_norm([if_, hf_]), compute_norm([ig, hg]), compute_norm([io, ho])
gates_f.write(str(inorm)+'\t'+str(fnorm)+'\t'+str(gnorm)+'\t'+str(onorm)+'\n')
return
def gradients_compute(model, args, all_gradients):
ht_norms = model.rnn.concatenate_lists(model.rnn.f_ht, model.rnn.b_ht)
ht_norms = ht_norms[::-1]
ht_grads = process_gradients(ht_norms)
all_gradients.append(ht_grads)
return
def write_gradients(fp, args, all_gradients, model_dir):
sum_gradients = (sum(all_gradients) / len(all_gradients)).tolist()
f = open(model_dir + '/' + fp, 'w')
f.write('\n'.join([str(g) for g in sum_gradients]))
f.close()
return
def compute_ratios(all_gradients):
gradients = np.mean(all_gradients[-10:], axis=0)
first_ratio = gradients[0] / np.average(gradients[45:55])
sum_ratio = (gradients[0]+gradients[-1]) / np.average(gradients[45:55])
return first_ratio, sum_ratio
def free_stored_grads(model):
model.rnn.f_hh, model.rnn.f_ih, model.rnn.f_ht = [], [], []
model.rnn.b_hh, model.rnn.b_ih, model.rnn.b_ht = [], [], []
model.rnn.forward_acts, model.rnn.backward_acts = [], []
model.rnn.grad_fi, model.rnn.grad_ff, model.rnn.grad_fo = [], [], []
model.rnn.grad_bi, model.rnn.grad_bf, model.rnn.grad_bo = [], [], []
return