-
Notifications
You must be signed in to change notification settings - Fork 38
/
data.py
537 lines (431 loc) · 19.9 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
# Utilities for getting data
import os
import ipdb
import pdb
import random
import argparse
import spacy
import pickle
import csv
import nltk
import numpy as np
from tqdm import tqdm
import torch
from torchtext import data
from transformers import AutoTokenizer
from torchtext.vocab import build_vocab_from_iterator
from torchtext.data.utils import get_tokenizer
from torchtext.vocab import Vocab
from torchtext.data.functional import numericalize_tokens_from_iterator
def remerge_sent(sent):
# merges tokens which are not separated by white-space
# does this recursively until no further changes
# this ensures spacy tokenization does not
changed = True
while changed:
changed = False
i = 0
while i < len(sent)-1:
tok = sent[i]
if not tok.whitespace_:
ntok = sent[i+1]
# in-place operation.
sent.merge(tok.idx, ntok.idx+len(ntok))
changed = True
i += 1
return sent
def pos_tags(spacy_sentence):
pos, pos_indices, pos_words = [], [], []
for token_index, token in enumerate(spacy_sentence):
if token.pos_ in ['ADJ', 'ADV', 'NOUN', 'PROPN', 'VERB']:
pos.append(1)
pos_indices.append(token_index)
pos_words.append(token.lower_)
else:
pos.append(0)
pos.append(0)
pos.append(0)
pos.append(0)
return pos, pos_indices, pos_words
light_verbs = ["take", "have", "give", "do", "make", "has", "have", "be", "is", "were", "are", "was", "had", "being", "began", "am", "following", "having", "do", "does", "did", "started", "been", "became", "left", "help", "helped", "get", "keep", "think", "got", "gets", "include", "suggest", "used", "see", "consider", "means", "try", "start", "included", "lets", "say", "continued", "go", "includes", "becomes", "begins", "keeps", "begin", "starts", "said", "stop", "begin", "start", "continue", "say"]
def verb_tags(spacy_sentence):
verb, verb_indices, verb_words = [], [], []
for token_index, token in enumerate(spacy_sentence):
if token.pos_ in ['VERB'] and token.lower_ not in light_verbs:
verb.append(1)
verb_indices.append(token_index)
verb_words.append(token.lower_)
else:
verb.append(0)
verb.append(0)
verb.append(0)
verb.append(0)
return verb, verb_indices, verb_words
def _process_data(inp_fp, hparams, fields, tokenizer, label_dict, spacy_model=None):
model_str = hparams.model_str
examples, exampleDs, targets, lang_targets, orig_sentences = [], [], [], [], []
sentence = None
max_extraction_length = 5
if type(inp_fp) == type([]):
inp_lines = inp_fp
else:
inp_lines = open(inp_fp, 'r').readlines()
new_example = True
for line_num, line in tqdm(enumerate(inp_lines)):
line = line.strip()
if line == '':
new_example = True
if '[unused' in line or new_example:
if sentence is not None:
if len(targets) == 0:
targets = [[0]]
lang_targets = [[0]]
orig_sentence = sentence.split('[unused1]')[0].strip()
orig_sentences.append(orig_sentence)
exampleD = {'text': input_ids, 'labels': targets[:max_extraction_length], 'word_starts': word_starts, 'meta_data': orig_sentence}
if len(sentence.split()) <= 100:
exampleDs.append(exampleD)
targets = []
sentence = None
# starting new example
if line is not '':
new_example = False
sentence = line
tokenized_words = tokenizer.batch_encode_plus(sentence.split())
input_ids, word_starts, lang = [hparams.bos_token_id], [], []
for tokens in tokenized_words['input_ids']:
if len(tokens) == 0: # special tokens like \x9c
tokens = [100]
word_starts.append(len(input_ids))
input_ids.extend(tokens)
input_ids.append(hparams.eos_token_id)
assert len(sentence.split()) == len(word_starts), ipdb.set_trace()
else:
if sentence is not None:
target = [label_dict[i] for i in line.split()]
target = target[:len(word_starts)]
assert len(target) == len(word_starts), ipdb.set_trace()
targets.append(target)
if spacy_model != None:
sentences = [ed['meta_data'] for ed in exampleDs]
for sentence_index, spacy_sentence in tqdm(enumerate(spacy_model.pipe(sentences, batch_size=10000))):
spacy_sentence = remerge_sent(spacy_sentence)
assert len(sentences[sentence_index].split()) == len(spacy_sentence), ipdb.set_trace()
exampleD = exampleDs[sentence_index]
pos, pos_indices, pos_words = pos_tags(spacy_sentence)
exampleD['pos_index'] = pos_indices
exampleD['pos'] = pos
verb, verb_indices, verb_words = verb_tags(spacy_sentence)
if len(verb_indices) != 0:
exampleD['verb_index'] = verb_indices
else:
exampleD['verb_index'] = [0]
exampleD['verb'] = verb
for exampleD in exampleDs:
example = data.Example.fromdict(exampleD, fields)
examples.append(example)
return examples, orig_sentences
def process_data(hparams, predict_sentences=None):
train_fp, dev_fp, test_fp = hparams.train_fp, hparams.dev_fp, hparams.test_fp
hparams.bos_token_id, hparams.eos_token_id = 101, 102
do_lower_case = 'uncased' in hparams.model_str
tokenizer = AutoTokenizer.from_pretrained(hparams.model_str, do_lower_case=do_lower_case, use_fast=True, data_dir='data/pretrained_cache',
add_special_tokens=False, additional_special_tokens=['[unused1]', '[unused2]', '[unused3]'])
nlp = spacy.load("en_core_web_sm")
pad_index = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
TEXT = data.Field(use_vocab=False, batch_first=True, pad_token=pad_index)
WORD_STARTS = data.Field(use_vocab=False, batch_first=True, pad_token=0)
POS = data.Field(use_vocab=False, batch_first=True, pad_token=0)
POS_INDEX = data.Field(use_vocab=False, batch_first=True, pad_token=0)
VERB = data.Field(use_vocab=False, batch_first=True, pad_token=0)
VERB_INDEX = data.Field(use_vocab=False, batch_first=True, pad_token=0)
META_DATA = data.Field(sequential=False)
VERB_WORDS = data.Field(sequential=False)
POS_WORDS = data.Field(sequential=False)
LABELS = data.NestedField(data.Field(use_vocab=False, batch_first=True, pad_token=-100), use_vocab=False)
fields = {'text': ('text', TEXT), 'labels': ('labels', LABELS), 'word_starts': (
'word_starts', WORD_STARTS), 'meta_data': ('meta_data', META_DATA)}
if 'predict' not in hparams.mode:
fields['pos'] = ('pos', POS)
fields['pos_index'] = ('pos_index', POS_INDEX)
fields['verb'] = ('verb', VERB)
fields['verb_index'] = ('verb_index', VERB_INDEX)
if hparams.task == 'oie':
label_dict = {'NONE': 0, 'ARG1': 1, 'REL': 2, 'ARG2': 3,
'LOC': 4, 'TIME': 4, 'TYPE': 5, 'ARGS': 3}
else: # hparams.task == 'conj':
label_dict = {'CP_START': 2, 'CP': 1,
'CC': 3, 'SEP': 4, 'OTHERS': 5, 'NONE': 0}
cached_train_fp, cached_dev_fp, cached_test_fp = f'{train_fp}.{hparams.model_str.replace("/","_")}.pkl', f'{dev_fp}.{hparams.model_str.replace("/","_")}.pkl', f'{test_fp}.{hparams.model_str.replace("/","_")}.pkl'
all_sentences = []
if 'predict' in hparams.mode:
# no caching used in predict mode
if predict_sentences == None: # predict
if hparams.inp != None:
predict_f = open(hparams.inp, 'r')
else:
predict_f = open(hparams.predict_fp, 'r')
predict_lines = predict_f.readlines()
fullstops = []
predict_sentences = []
for line in predict_lines:
# Normalize the quotes - similar to that in training data
line = line.replace('’', '\'')
line = line.replace('”', '\'\'')
line = line.replace('“', '\'\'')
# tokenized_line = line.split()
tokenized_line = ' '.join(nltk.word_tokenize(line))
predict_sentences.append(tokenized_line+' [unused1] [unused2] [unused3]')
predict_sentences.append('\n')
predict_examples, all_sentences = _process_data(predict_sentences, hparams, fields, tokenizer, label_dict, None)
META_DATA.build_vocab(data.Dataset(predict_examples, fields=fields.values()))
predict_dataset = [(len(ex.text), idx, ex, fields) for idx, ex in enumerate(predict_examples)]
train_dataset, dev_dataset, test_dataset = predict_dataset, predict_dataset, predict_dataset
else:
if not os.path.exists(cached_train_fp) or hparams.build_cache:
train_examples, _ = _process_data(train_fp, hparams, fields, tokenizer, label_dict, nlp)
pickle.dump(train_examples, open(cached_train_fp, 'wb'))
else:
train_examples = pickle.load(open(cached_train_fp, 'rb'))
if not os.path.exists(cached_dev_fp) or hparams.build_cache:
dev_examples, _ = _process_data(dev_fp, hparams, fields, tokenizer, label_dict, nlp)
pickle.dump(dev_examples, open(cached_dev_fp, 'wb'))
else:
dev_examples = pickle.load(open(cached_dev_fp, 'rb'))
if not os.path.exists(cached_test_fp) or hparams.build_cache:
test_examples, _ = _process_data(test_fp, hparams, fields, tokenizer, label_dict, nlp)
pickle.dump(test_examples, open(cached_test_fp, 'wb'))
else:
test_examples = pickle.load(open(cached_test_fp, 'rb'))
META_DATA.build_vocab(data.Dataset(train_examples, fields=fields.values()), data.Dataset(
dev_examples, fields=fields.values()), data.Dataset(test_examples, fields=fields.values()))
train_dataset = [(len(ex.text), idx, ex, fields) for idx, ex in enumerate(train_examples)]
dev_dataset = [(len(ex.text), idx, ex, fields) for idx, ex in enumerate(dev_examples)]
test_dataset = [(len(ex.text), idx, ex, fields) for idx, ex in enumerate(test_examples)]
train_dataset.sort() # to simulate bucket sort (along with pad_data)
return train_dataset, dev_dataset, test_dataset, META_DATA.vocab, all_sentences
class dotdict(dict):
"""dot.notation access to dictionary attributes"""
__getattr__ = dict.get
__setattr__ = dict.__setitem__
__delattr__ = dict.__delitem__
def pad_data(data):
fields = data[0][-1]
TEXT = fields['text'][1]
text_list = [ex[2].text for ex in data]
padded_text = torch.tensor(TEXT.pad(text_list))
LABELS = fields['labels'][1]
labels_list = [ex[2].labels for ex in data]
# max_depth = max([len(l) for l in labels_list])
max_depth = 5
for i in range(len(labels_list)):
pad_depth = max_depth - len(labels_list[i])
num_words = len(labels_list[i][0])
# print(num_words, pad_depth)
labels_list[i] = labels_list[i] + [[0]*num_words]*pad_depth
# print(labels_list)
padded_labels = torch.tensor(LABELS.pad(labels_list))
WORD_STARTS = fields['word_starts'][1]
word_starts_list = [ex[2].word_starts for ex in data]
padded_word_starts = torch.tensor(WORD_STARTS.pad(word_starts_list))
META_DATA = fields['meta_data'][1]
meta_data_list = [META_DATA.vocab.stoi[ex[2].meta_data] for ex in data]
padded_meta_data = torch.tensor(META_DATA.pad(meta_data_list))
paddedD = {'text': padded_text, 'labels': padded_labels,
'word_starts': padded_word_starts, 'meta_data': padded_meta_data}
if 'pos' in fields:
POS = fields['pos'][1]
pos_list = [ex[2].pos for ex in data]
padded_pos = torch.tensor(POS.pad(pos_list))
paddedD['pos'] = padded_pos
POS_INDEX = fields['pos_index'][1]
pos_index_list = [ex[2].pos_index for ex in data]
padded_pos_index = torch.tensor(POS_INDEX.pad(pos_index_list))
paddedD['pos_index'] = padded_pos_index
if 'verb' in fields:
VERB = fields['verb'][1]
verb_list = [ex[2].verb for ex in data]
padded_verb = torch.tensor(VERB.pad(verb_list))
paddedD['verb'] = padded_verb
VERB_INDEX = fields['verb_index'][1]
verb_index_list = [ex[2].verb_index for ex in data]
padded_verb_index = torch.tensor(VERB_INDEX.pad(verb_index_list))
paddedD['verb_index'] = padded_verb_index
return paddedD
def ext_to_string(extraction):
ext_str = ''
ext_str = f'{extraction.confidence:.02f}: ({extraction.args[0]}; {extraction.pred})'
if len(extraction.args) >= 2:
ext_str = f'{ext_str[:-1]}; {"; ".join(extraction.args[1:])})'
return ext_str
def ext_to_sentence(extraction):
ext_str = ''
ext_str = f'{extraction.args[0]} {extraction.pred}'
if len(extraction.args) >= 2:
ext_str = f'{ext_str} {" ".join(extraction.args[1:])}'
return ext_str
def coords_to_string(conj_coords, words):
conj_str = ''
for coord_index in conj_coords:
if conj_coords[coord_index] == None:
conj_str += words[coord_index]+': None \n'
continue
cc_word = words[conj_coords[coord_index].cc]
conj_str += cc_word+': '
for conjunct in conj_coords[coord_index].conjuncts:
conjunct_words = ' '.join(words[conjunct[0]:conjunct[1]+1])
conj_str += conjunct_words+'; '
conj_str = conj_str[:-2]+' \n'
return conj_str
def convert_to_namespace(d):
params = argparse.Namespace()
for key in d:
setattr(params, key, d[key])
return params
def override_args(loaded_hparams_dict, current_hparams_dict, cline_sys_args):
# override the values of loaded_hparams_dict with the values i current_hparams_dict
# (only the keys in cline_sys_args)
for arg in cline_sys_args:
if '--' in arg:
key = arg[2:]
loaded_hparams_dict[key] = current_hparams_dict[key]
for key in current_hparams_dict:
if key not in loaded_hparams_dict:
loaded_hparams_dict[key] = current_hparams_dict[key]
return loaded_hparams_dict
def coords_to_sentences(conj_coords, words):
for k in list(conj_coords):
if conj_coords[k] is None:
conj_coords.pop(k)
for k in list(conj_coords):
if words[conj_coords[k].cc] in ['nor', '&']: # , 'or']:
conj_coords.pop(k)
num_coords = len(conj_coords)
# for k in list(conj_coords):
# if len(conj_coords[k].conjuncts) < 3 and words[conj_coords[k].cc].lower() == 'and':
# conj_coords.pop(k)
# if len(conj_coords[k].conjuncts) < 3:
# conj_coords.pop(k)
# else:
# named_entity = False
# for conjunct in conj_coords[k].conjuncts:
# # if not words[conjunct[0]][0].isupper():
# if (conjunct[1]-conjunct[0]) > 0 or len(conj_coords)>1:
# named_entity = True
# if named_entity:
# # conj_words = []
# # for conjunct in conj_coords[k].conjuncts:
# # conj_words.append(' '.join(words[conjunct[0]:conjunct[1]+1]))
# # open('temp.txt', 'a').write('\n'+' '.join(words)+'\n'+'\n'.join(conj_words)+'\n')
# conj_coords.pop(k)
remove_unbreakable_conjuncts(conj_coords, words)
conj_words = []
for k in list(conj_coords):
for conjunct in conj_coords[k].conjuncts:
conj_words.append(' '.join(words[conjunct[0]:conjunct[1]+1]))
sentence_indices = []
for i in range(0, len(words)):
sentence_indices.append(i)
roots, parent_mapping, child_mapping = get_tree(conj_coords)
q = list(roots)
sentences = []
count = len(q)
new_count = 0
conj_same_level = []
while (len(q) > 0):
conj = q.pop(0)
count -= 1
conj_same_level.append(conj)
for child in child_mapping[conj]:
q.append(child)
new_count += 1
if count == 0:
get_sentences(sentences, conj_same_level,
conj_coords, sentence_indices)
count = new_count
new_count = 0
conj_same_level = []
word_sentences = [' '.join([words[i] for i in sorted(sentence)]) for sentence in sentences]
return word_sentences, conj_words, sentences
# return '\n'.join(word_sentences) + '\n'
def get_tree(conj):
parent_child_list = []
child_mapping, parent_mapping = {}, {}
for key in conj:
assert conj[key].cc == key
parent_child_list.append([])
for k in conj:
if conj[k] is not None:
if is_parent(conj[key], conj[k]):
parent_child_list[-1].append(k)
child_mapping[key] = parent_child_list[-1]
parent_child_list.sort(key=list.__len__)
for i in range(0, len(parent_child_list)):
for child in parent_child_list[i]:
for j in range(i + 1, len(parent_child_list)):
if child in parent_child_list[j]:
parent_child_list[j].remove(child)
for key in conj:
for child in child_mapping[key]:
parent_mapping[child] = key
roots = []
for key in conj:
if key not in parent_mapping:
roots.append(key)
return roots, parent_mapping, child_mapping
def is_parent(parent, child):
min = child.conjuncts[0][0]
max = child.conjuncts[-1][-1]
for conjunct in parent.conjuncts:
if conjunct[0] <= min and conjunct[1] >= max:
return True
return False
def get_sentences(sentences, conj_same_level, conj_coords, sentence_indices):
for conj in conj_same_level:
if len(sentences) == 0:
for conj_structure in conj_coords[conj].conjuncts:
sentence = []
for i in range(conj_structure[0], conj_structure[1] + 1):
sentence.append(i)
sentences.append(sentence)
min = conj_coords[conj].conjuncts[0][0]
max = conj_coords[conj].conjuncts[-1][-1]
for sentence in sentences:
for i in sentence_indices:
if i < min or i > max:
sentence.append(i)
else:
to_add = []
to_remove = []
for sentence in sentences:
if conj_coords[conj].conjuncts[0][0] in sentence:
sentence.sort()
min = conj_coords[conj].conjuncts[0][0]
max = conj_coords[conj].conjuncts[-1][-1]
for conj_structure in conj_coords[conj].conjuncts:
new_sentence = []
for i in sentence:
if i in range(conj_structure[0], conj_structure[1] + 1) or i < min or i > max:
new_sentence.append(i)
to_add.append(new_sentence)
to_remove.append(sentence)
for sent in to_remove:
sentences.remove(sent)
sentences.extend(to_add)
def remove_unbreakable_conjuncts(conj, words):
unbreakable_indices = []
unbreakable_words = ["between", "among", "sum", "total", "addition", "amount", "value", "aggregate", "gross",
"mean", "median", "average", "center", "equidistant", "middle"]
for i, word in enumerate(words):
if word.lower() in unbreakable_words:
unbreakable_indices.append(i)
to_remove = []
span_start = 0
for key in conj:
span_end = conj[key].conjuncts[0][0] - 1
for i in unbreakable_indices:
if span_start <= i <= span_end:
to_remove.append(key)
span_start = conj[key].conjuncts[-1][-1] + 1
for k in set(to_remove):
conj.pop(k)